A Survey of Right Interior Angles in Hexagons

A Survey of Right Interior Angles in Hexagons

A regular hexagon, of course, has no right angles, but irregular, convex hexagons can have one, two, or three right angles.

With one right angle, there is only one basic configuration, but, with two right angles, there are three: the right angles may be consecutive, have one non-right angle between them, or be opposite angles.

There are also three possible configurations with three right angles: the three angles can be consecutive, or two can be consecutive with one non-right angle separating the other right angle from the consecutive pair, or every other angle can be a right angle.

Four right angles cannot exist in a convex hexagon, nor can five, nor, of course, six. Four right interior angles are possible, however, for non-convex hexagons, and, again, there are three possible configurations. In the first, the four right angles are consecutive. In the second, three are consecutive, then a non-right angle separates the fourth right angle from the other three. In the third, there are two pairs of consecutive right angles, with single non-right angles separating the pairs on opposite sides of the hexagon.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s