The polyhedron above is a 522-faced zonish polyhedron, which resembles, but is not identical to, a zonohedron. True zonohedra are recognizable as that type of polyhedron by their exclusively zonogonal faces. Zonogons are polygons with even numbers of sites, and with opposite sides both congruent and parallel. If you examine the polyhedron above carefully, you’ll find it does not follow these rules. Stella 4d, the polyhedral-manipulation software I use to make these images, allows one to create either a true zonohedron, or a mere “zonish” polyhedron, as the user chooses, starting from another polyhedron (which may, itself, be zonish, a true zonohedron, or neither).
The next polyhedron is the dual of the polyhedron above. This dual has 920 faces. The duals of both zonohedra and zonish polyhedra have a distincive appearance, but, to my knowledge, no one has yet given either set of polyhedra a single-word name. In my opinion, such names are both needed, and deserved.
If you would like to try Stella 4d for yourself, there is a free trial download available at http://www.software3d.com/Stella.php.