## A Torus and Its Dual, Part I

The torus is a familiar figure to many, so I chose a quick rotational period (5 seconds) for it. The dual of a torus — and I don’t know what else to call it — is not as familiar, so, for it, I extended the rotational period to 12 seconds.

By viewing the compound of the torus and its dual, one can see the the dual is the larger of the two, by far:

I used Stella 4d to make these images. It’s a program you can buy, or try for free, at this website: http://www.software3d.com/Stella.php.

I go by RobertLovesPi on-line, and am interested in many things. Welcome to my little slice of the Internet. The viewpoints and opinions expressed on this website are my own. They should not be confused with the views of my employer, nor any other organization, nor institution, of any kind.
This entry was posted in Mathematics and tagged , , , , . Bookmark the permalink.

### 5 Responses to A Torus and Its Dual, Part I

1. howardat58 says:

Question: Dual as in what sense?

Liked by 1 person

• In the same sense that a cube and an octahedron are duals, or an icosahedron and a dodecahedron are duals. In a dual pair, the positions of faces and vertices are transposed, in a difficult-to-explain way, over edges, with the edges of one figure perpendicular to the edges of its dual. Stella renders tori (and their duals) with many flat faces, not one smoothly-curving surface. Now that you bring it up, I’m not certain the concept of duality would survive the transition to smoothly-curving surfaces, or how it would be altered if it did survive. I will need to investigate this further.

Like

2. it’s make me happy and positive

Liked by 1 person

3. Ashok says:

Out of sheer curosity how does the volumr between the two cones change?
Thanks
Ashok

Liked by 1 person

• Judging from the fact that the two cones (on one side) get closer to each other in the next post, when more faces are used (to better simulate a true torus, with one smoothly curving surface), my guess is that the volume of this between-cone region is approaching a limit of zero as toroidal polyhedra and their duals approach smoothly-curving tori and their duals. In other words, the two cones approach each other, and finally meet at the limit.

Like