An Unusual Tessellation

This tessellation appears, at first, to be regular (or “Archimedean,” by analogy with the Archimedean solids), for all of the polygons included are regular. However, it is not vertex-transitive, which keeps it from qualifying as a regular or Archimedean tessellation.

unusual-tessellation

The Truncated Cube, with Two Variations Featuring Regular Dodecagons

This is the truncated cube, one of the thirteen Archimedean solids.

trunc-cube

If the truncation-planes are shifted, and increased in number, in just the right way, this variation is produced. Its purple faces are regular dodecagons, and the orange faces are kites — two dozen, in eight sets of three.

dodecagons-and-kites

Applying yet another truncation, of a specific type, produces the next polyhedron. Here, the regular dodecagons are blue, and the red triangles are equilateral. The yellow triangles are isosceles, with a vertex angle of ~41.4 degrees.

vetex-angle-41p4-degrees

All three of these images were produced using Stella 4d, available at this website.