Cluster of 33 Icosidodecahedra

There’s one icosidodecahedron at the center of this cluster, with more icosidodecahedra attached to each of the central figure’s 32 faces. In the first version, the coloring is simply based as the number of sides for each face.

Augmented Icosidodeca 33.gif

In the next picture, the coloring is by face-type (position in the overall cluster).

Augmented Icosidodeca 33 color by face type.gif

The last image shown here has the cluster in “rainbow color mode.”

Augmented Icosidodeca 33 rainbow.gif

I used Stella 4d to make these — a program you may try for free right here.

An Icosahedron Augmented with Twenty Great Icosahedra, together with the Dual of this Cluster-Polyhedron

icosa Augmented by great Icosas.gif

The cluster-polyhedron above was formed by augmenting a central isocahedron with twenty great icosahedra. The dual of this cluster is shown below.

icosa Augmented by great Icosas dual.gif

Both these images were created using Stella 4d, which you may try for free at

Augmenting, and Then Reaugmenting, the Icosahedron, with Icosahedra

A reader of this blog, in a comment on the last post here, asked what would happen if each face of an icosahedron were augmented by another icosahedron. I was also asked what the convex hull of such an icosahedron-cluster would be. Here are pictures which answer both questions, in order.

Augmented Icosa with more icosas.gif

Convex hull of icosa augmented with icosas.gif

While the icosahedron augmented by twenty icosahedron forms an unusual non-convex shape, its convex hull is simply a slightly “stretched” version of the truncated dodecahedron, one of the Archimedean solids.

The reader who asked these questions did not ask what would happen if the icosahedron-cluster above were to be augmented, on every face, by yet more icosahedra. However, I got curious about this, myself, and created the answer: the following cluster of even-more numerous icosahedra. This could be called, I suppose, the “reaugmented” icosahedron.

Augmented Icosa with more icosas and then yet more icosas.gif

Finally, here is the convex hull of this even-larger cluster. No one asked for it; I simply got curious.

Convex hull of the reaugmented icosahedral cluster

To accomplish the polyhedron-manipulation and image-creation for this post, I used a program called Stella 4d: Polyhedron Navigator, which is available at A free trial download is available there, so you can try the software before deciding whether or not to purchase it. 

Cluster of Six Rhombicosidodecahedra

Augmented Cubocta

To make this cluster, start with a cuboctahedron, then augment each of its square faces with rhombicosidodecahedra. Although the cuboctahedron has cuboctahedral symmetry, this cluster does not — rather, it has tetrahedral symmetry. I created this using Stella 4d, which is available here.

Three Views of a Rotating Cluster of 33 Icosidodecahedra


To make these three rotating cluster-polyhedra, I started with one icosidodecahedron in the center, then augmented each of its 32 faces with overlapping, additional icosidodecahedra, for a total of 33 icosidodecahedra per cluster. In the first image, only two colors are used: one for the triangular faces, and another for the pentagons. The second version, however, has the colors assigned by face-type, which is determined by each face’s placement in the overall cluster.


For the third version, I simply put Stella 4d (the program I use to make these images) into “rainbow color mode.” If you’d like to give Stella 4d a try, you can do so for free at this website.