Mandala Based on the Number 48

Image

explode

Fractiles’ Mandala, Based on Angles of Pi/7 Radians

fractiles7withblackbackground

Although this was based on something I constructed using the Fractiles-7 magnetic tiling toy, I did not have enough magnetic pieces to finish this. The idea was, therefore, converted into a (non-Euclidean) construction using Geometer’s Sketchpad, and then refined using MS-Paint. The reason I describe this as a non-Euclidean construction is that an angle of pi/7 radians, such as the acute angles in the red rhombi, cannot be constructed using compass and unmarked straight edge: antiquity’s Euclidean tools. The other angles used are whole-number multiples of pi/7 radians, up to and including 6pi/7 radians for the obtuse angles of the red rhombi.

The yellow rhombi have angles measuring 2pi/7 and 5pi/7 radians, while the blue rhombi’s angles measures 3pi/7 and 4pi/7 radians. None of these angles have degree measures which are whole numbers. It is no coincidence that 7 is not found among the numerous factors of 360. It is, in fact, the smallest whole number for which this is true.

I have a conjecture that this aperiodic radial tiling-pattern could be continued, using these same three rhombi, indefinitely, but this has not yet been tested beyond the point shown.

A Rhombic Mandala Based on Pi Over Nine

ninthsThe interior angles in these rhombi all measure π/9 radians, or some whole-number multiple of that amount, up to 8π/9 radians.

Two Versions of a Starry Mandala

stars coloredstars colored version two

Focus

focus

A Mandala Made of Hexagons, Enneagons, and Dodecagons

recreational math from 2011

I recently re-discovered this “lost work,” which I made using Geometer’s Sketchpad, in 2011 — before I started this blog, which is why it has not appeared here before.

A Forgotten Mandala, from 2010

Someone found this, and “liked” it, in my old Facebook pictures. I had forgotten all about it, until this happened. It is a mandala, made of rhombi, with nine-fold symmetry, made in 2010 with Geometer’s Sketchpad — two years before I started this blog.

from 2010

32 Octagonal Mandalas, Rotating in the Dark

Icosidodeca

To create the octagonal mandalas, I used Geometer’s Sketchpad and MS-Paint. I then projected them onto the faces of an all-but invisible icosidodecahedron, and created this rotating .gif image of it, using Stella 4d: Polyhedron Navigator, software you can try for free, right here.

A Dozen Octagonal Mandalas, Rotating in the Dark

DodecaTo create the octagonal mandalas, I used Geometer’s Sketchpad and MS-Paint. I then projected them onto the faces of an all-but invisible dodecahedron, and created this rotating .gif image of it, using Stella 4d: Polyhedron Navigator, software you can try for free, right here.

Octagons

octagons

octagons2

octagons3

octagons4

octagons5

octagons6