A Central Icosidodecahedron, Augmented with Twenty Cuboctahedra, and Twelve More Icosidodecahedra

Augmented Icosidodeca aug with 20 cuboctas and 12 icosidodecas color scheme two

Above and below, you will find two different coloring-schemes for this particular cluster of polyhedra. I made both of these rotating images using Stella 4d, software you can buy, or try for free, right here.

Augmented Icosidodeca aug with 20 cuboctas and 12 icosidodecas

A Central Icosahedron, Augmented with Twenty Rhombicosidodecahedra

Augmented Icosa AUG WITH RIDs

A model this complex would have taken days to build by hand. With software called Stella 4d: Polyhedron Navigator, however, making this “virtual model” was easy. This program is available for purchase at this website — and there is a free trial download available there, as well.

Five More Clusters of Rhombicosidodecahedra

Making the four different clusters of rhombicosidodecahedra seen in the post right before this one was fun, so I decided to make more of them.

Tetrahedra 20 A augmented with 80 RIDs

There are two different forms of the compound of twenty tetrahedra. To make the polyhedral cluster above, I chose one of them, and then augmented each of its 20(4) = 80 triangular faces with a rhombicosidodecahedron.

For the next of these clusters, I decided to move away from using compounds for the central, hidden figure. Instead, I chose a snub cube, and augmented each of its 32 triangular faces with a rhombicosidodecahedron. Since the snub cube is chiral, this cluster is chiral as well.

Augmented Snub Cube the 32 triangles are augmented by RIDs

Any chiral polyhedron can be combined with its mirror-image to produce a new compound, and that’s what I did to make this next cluster, which is composed of 64 rhombicosidodecahedra: I simply added the cluster above to its own reflection.

Compound of enantiomorphic pair of snub cubes with RIDs augmenting the 64 triangles

Next, I turned to the snub dodecahedron, also chiral, and with 80 triangular faces. Augmentation of all 80 produced this chiral cluster of 80 rhombicosidodecahedra:

Augmented Snub Dodeca with 80 RIDs on triangular faces it is chiral

Finally, I added this last cluster to its own mirror-image, producing this symmetrical cluster of 160 rhombicosidodecahedra.

160 RIDs augmenting the triangular faces of snub dod enan pair compound

Each of these was created using a program called Stella 4d: Polyhedron Navigator, software you can try for free right here.

Four Different Clusters of Multiple Rhombicosidodecahedra

Octa 5 augmented with 40 RIDs

To make the cluster above, I began with the compound of five octahedra, which has 5(8) = 40 faces, all of them equilateral triangles. Next, I augmented each of those triangular faces with a single rhombicosidodecahedron — forty in all.

Next, I started anew with the compound of five dodecahedra, which has 5(12) = 60 pentagonal faces, all of them regular. Each of these sixty pentagons was then augmented by a single rhombicosidodecahedron.

Dodecahedra 5 augmented by 60 RIDs

For the next cluster, I started with the most well-known compound of ten tetrahedra. There are actually two such compounds; I used the one which is the compound of the chiral five-tetrahedron compound, combined with its mirror image. Since 10(4) = 40, this cluster, like the first one in this post, contains forty rhombicosidodecahedra. Unlike the other models shown here, this one has “holes,” which you can see as it rotates, but the reason for this is a mystery to me. The same is true for the first cluster shown in this post.

Tetrahedra 10 augemnted with 40 RIDs

There also exist two compounds of eight tetrahedra each, and I used one of them for this next cluster, using the same procedure, so this cluster is composed of 8(4) = 32 rhombicosidodecahedra.

Tetrahedra 8 augmented with 32 RIDs

All four of these clusters were created with Stella 4d, a program you may try for free here.

The Great Rhombicosidodecahedron, Built from Rhombic Triacontahedra, and Its Dual

The great rhombicosidodecahedron is also known as the truncated icosidodecahedron (and, confusingly, several other names). Regardless of what it’s called, these pictures demonstrate that this Archimedean solid can be constructed using rhombic triacontahedra as building-blocks.

First, here’s one in the same color I used for the decagonal ring of rhombic triacontahedra in the last post:

GRID of Rhombic Triaconta

The next one is identical, except I used “rainbow color mode” for it.

GRID of Rhombic Triaconta RB

Also, just in case you’re curious, here’s the dual of this polyhedron-made-of-polyhedra — this time, colored by face-type.

dual of GRID of Rhombic Triaconta

These virtual models were all built using Stella 4d, software you may buy, or try for free, right here.

A Cluster of Twenty Great Icosahedra, Excavated from the Faces of a Central Icosahedron, Along with Its Dual

Augmented Icosa its excavated with great icosas

These twenty great icosahedra were excavated from the faces of a central icosahedron, which is concealed in the figure’s center. These excavations exceed the limits of the central icosahedron, resulting in each great icosahedron protruding in a direction opposite that of the face from which it is excavated. In a certain sense, then, the figure above has negative volume.

To make this, I used software called Stella 4d: Polyhedron Navigator. It can be researched, bought, or tried for free here.

Also, here is the dual of the polyhedral cluster above, made with the same program.

Augmented Icosa its excavated with great icosas the dual

On Consistent and Inconsistent Combining of Chiralities, Using Polyhedral Augmentation

For any given chiral polyhedron, a way already exists to combine it with its own mirror-image — by creating a compound. However, using augmentation, rather than compounding, opens up new possibilities.

The most well-known chiral polyhedron is the snub cube. This reflection of it will be referred to here using the letter “A.”

Snub Cube ATo avoid unnecessary confusion, the same direction of rotation is used throughout this post. Apart from that, though, the image below, “Snub Cube B,” is the reflection of the first snub cube shown.

Snub Cube B

There are many ways to modify polyhedra, and one of them is augmentation. One way to augment a snub cube is to attach additional snub cubes to each square face of a central snub cube, creating a cluster of seven snub cubes. In the next image, all seven are of the “A” variety.

Snub Cube seven of them  AA

If one examines the reflection of this cluster of seven “A” snub cubes, all seven, in the reflection, are of the “B” variety, as shown here:

Snub Cube seven of them BB

Even though one is the reflection of the other, both clusters of seven snub cubes above have something in common: consistent chirality. As the next image shows, inconsistent chirality is also possible.

Snub Cube A augmented with B

The cluster shown immediately above has a central snub cube of the “A” variety, but is augmented with six “B”-variety snub cubes. It therefore exhibits inconsistent chirality, as does its reflection, a “B” snub cube augmented with “A” snub cubes:

Snub Cube B augmented with A

With simple seven-part snub-cube  clusters formed by augmentation of a central snub cube’s square faces by six snub cubes of identical chirality to each other, this exhausts the four possibilities. However, multiplying the possibilities would be easy, by adding more components, using other polyhedra, mixing chiralities within the set of polyhedra added during an augmentation, and/or mixing consistent and inconsistent chirality, at different stages of the growth of a polyhedral cluster formed via repeated augmentation.

All the images in this post were created using Stella 4d, which you can try for yourself at this website.

The Greatly Augmented Icosidodecahedron, and Its Dual

Augmented Icosidodeca

If a central polyhedron’s pentagonal and triangular faces are augmented by great dodecahedra and great icosahedra, I refer to it as a “greatly augmented” polyhedron. Here, this has been done with an icosidodecahedron. The same figure appears below, but in “rainbow color” mode.

Augmented Icosidodeca colored rainbow

In the next image, “color by face type,” based on symmetry, was used.

Augmented Icosidodeca colored by face type

The next image shows the dual of this polyhedral cluster, with face color chosen on the basis of number of sides.

Augmented Icosidodeca colored by whether sides have 5 or 16 sides

Here is another version of the dual, this one in “rainbow color” mode.

Augmented Icosidodeca colored rainbow DUAL

Finally, this image of the dual is colored based on face type.

Augmented Icosidodeca colored by face type DUAL

These six images were made with Stella 4d, which may be found here.

A Rhombicosidodecahedron, Made of Rhombicosidodecahedra

This “metarhombicosidodecahedron” took a long time to build, using Stella 4d, which you can find at http://www.software3d.com/Stella.php — so, when I finished it, I made five different versions of it, by altering the coloring settings. I hope you like it.

Augmented Rhombicosidodeca

Augmented Rhombicosidodeca2

Augmented Rhombicosidodeca4

Augmented Rhombicosidodeca5

Augmented Rhombicosidodeca6

Three Polyhedral Clusters of Icosahedra

In the last post on this blog, there were three images, and the first of these was a rotating icosahedron, rendered in three face-colors. After making it, I decided to see what I could build, using these tri-colored icosahedra as building blocks. Augmenting the central icosahedron’s red and blue faces with identical icosahedra creates this cubic cluster of nine icosahedra:

cube of icosahedra

If, on the other hand, this augmentation is performed only on the blue faces of the central icosahedron, the result is a tetrahedral cluster of five icosahedra:

5 icosa

The next augmentation I performed started with this tetrahedral cluster of five icosahedra, and added twelve more of these icosahedra, one on each of the blue faces of the four outer icosahedra. The result is a cluster of 17 icosahedra, with an overall icosahedral shape.

icosa made of icosa

All of these images were made using Stella 4d, which is available at http://www.software3d.com/Stella.php.