An Expansion of the Rhombicosidodecahedron

An expansion of the RID with 122 faces 30 rhombi 60 almostsquares 12 pentagons and twenty triangles

This expanded version of the rhombicosidodecahedron has, as faces, 30 rhombi, 60 almost-square trapezoids, twelve regular pentagons, and twenty equilateral triangles, for a total of 122 faces. I made it using Stella 4d, software you may try for free at http://www.software3d.com/Stella.php.

I call this an “expansion of the rhombicosidodecahedron” because it is similar in appearance to that Archimedean solid. However, it is formed by augmenting the thirty faces of a rhombic triacontahedron with prisms, taking the convex hull of the result, and then using Stella‘s “try to make faces regular” function on that convex hull.

A Polyhedral Journey, Beginning With an Expansion of the Rhombic Triacontahedron

The blue figure below is the rhombic triacontahedron. It has thirty identical faces, and is one of the Catalan solids, also known as Archimedean duals. This particular Catalan solid’s dual is the icosidodecahedron.

Rhombic Triaconta

I use a program called Stella 4d (available here) to transform polyhedra, and the next step here was to augment each face of this polyhedron with a prism, keeping all edge lengths the same.

Rhombic Triaconta augmented

After that, I created the convex hull of this prism-augmented rhombic triacontahedron, which is the smallest convex figure which can enclose a given polyhedron.

Convex hull

Another ability of Stella is the “try to make faces regular” function. Throwing this function at this four-color polyhedron above produced the altered version below, in which edge lengths are brought as close together as possible. It isn’t possible to do this perfectly, though, and that is most easily seen in the yellow faces. While close to being squares, they are actually trapedoids.

ch after ttmfr

For the next transformation, I looked at the dual of this polyhedron. If I had to name it, I would call it the trikaipentakis icosidodecahedron. It has two face types: sixty of the larger kites, and sixty of the smaller ones, also.

ch after ttmfr dual

Next, I used prisms, again, to augment each face. The height used for these prisms is the length of the edges where orange kites meet purple kites.

aug ch after ttmfr dual

Lastly, I made the convex hull of the polyhedron above. This convex hull appears below.

Convex hull again

 

The Beginning of the Number Pi, in Binary Through Hexadecimal, etc.

Image

The Beginning of the Number Pi, in Binary Through Hexadecimal, etc.

Binary (base-2) pi: 11.00100 10000 11111 10110 10101 00010 00100 00101 10100 01100 00100 01101 00110 00100 11000 11001 10001 01000 10111 00000 . . .

Trinary (base-3) pi: 10.01021 10122 22010 21100 21111 10221 22222 01112 01212 12120 01211 00100 10122 20222 12012 01211 12101 21011 20022 01202 . . .

Quaternary (base-4) pi: 3.02100 33312 22202 02011 22030 02031 03010 30121 20220 23200 03130 01303 10102 21000 21032 00202 02212 13303 01310 00020 . . .

Quinary (base-5) pi: 3.03232 21430 33432 41124 12240 41402 31421 11430 20310 02200 34441 32211 01040 33213 44004 32444 01441 04233 41330 11323 . . .

Heximal (base-6) pi: 3.05033 00514 15124 10523 44140 53125 32110 23012 14442 00411 52525 53314 20333 13113 55351 31233 45533 41001 51543 44401 . . .

Septenary (base-7) pi: 3.06636 51432 03613 41102 63402 24465 22266 43520 65024 01554 43215 42643 10251 61154 56522 00026 22436 10330 14432 33631 . . .

Octal (base-8) pi: 3.11037 55242 10264 30215 14230 63050 56006 70163 21122 01116 02105 14763 07200 20273 72461 66116 33104 50512 02074 61615 . . .

Nonary (base-9) pi: 3.12418 81240 74427 88645 17776 17310 35828 51654 53534 62652 30112 63214 50283 86403 43541 63303 08678 13278 71588 . . .

Decimal (base-10) pi: 3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679 . . .

Undecimal (base-11) pi: 3.16150 70286 5A48 . . .

Duodecimal (base-12) pi: 3.18480 9493B 91866 4573A 6211B B1515 51A05 72929 0A780 9A492 74214 0A60A 55256 A0661 A0375 3A3AA 54805 64688 0181A 36830 . . .

Tridecimal (base 13) pi: 3.1AC10 49052 A2C7 . . .

Tetradecimal (base-14) pi: 3.1DA75 CDA81 3752 . . .

Pentadecimal (base-15) pi: 3.21CD1 DC46C 2B7A . . .

Hexadecimal (base-16) pi: 3.243F6 A8885 A308D 31319 8A2E0 37073 44A40 93822 299F3 1D008 2EFA9 8EC4E 6C894 52821 E638D 01377 BE546 6CF34 E90C6 CC0AC . . .

* * *

In each of the above counting systems, pi’s expanded form retains the usual properties of irrational numbers: the digits don’t ever terminate, nor settle into a repetitive pattern. It also isn’t possible, in any of these counting systems, to express pi as a/b, where a and b are whole numbers in that base. However, in base-pi, the number pi is simply written this way, in its entirety: 10. Also, the square of pi is written 100, pi-cubed is written 1000, etc. However, if you want to try to figure out how to write, say, the decimal number ten, in base-pi, best of luck to you.