The Rhombic Dodecahedron / Rhombic Triacontahedron Compound

Icosidodeca + Cubocta dualStella 4d has this in its built-in library. You can try it at http://www.software3d.com/Stella.php.

The Dodecahedron / Octahedron Compound

Dodeca + Octa

This rotating image was assembled using Stella 4d, available at http://www.software3d.com/Stella.php.

Two Colorings of a Hollow Stella Octangula

hollow stella octangula 2

hollow stella octangula

Both of these versions of the stella octangula, or compound of two tetrahedra, were made with Stella 4d, software available at http://www.software3d.com/Stella.php.

A Polyhedral Caltrop

caltrop

Created using Stella 4d, available at http://www.software3d.com/Stella.php.

Two Polyhedral Compounds

Compound of the RTC and a strombic hexacontahedron

The image above is a compound of the rhombic triacontahedron (the dual of the icosidodecahedron) and a strombic hexacontahedron (the dual of the rhombicosidodecahedron). Below, you’ll find a compound of six square-based pyramids, all with their “centers of mass” (assuming uniform density) displaced, from the compound’s center, by equal amounts. In response to a request I have received, polyhedral images which rotate more slowly are coming soon . . . after I have finished posting my backlog of already-produced polyhedral .gif files, since there is no way to slow them down after they are already created.

Compound of Twelve Square-based pyramids

The program I use for these polyhedral investigations is Stella 4d, available at www.software3d.com/Stella.php.

A Polyhedral Shuttlecraft, Adrift in Outer Space

Misc1

Most of the polyhedra I post here have one of the symmetry-types which are collectively called “polyhedral” symmetry: tetrahedral, cuboctahedral, icosidodecahedral, or chiral variants of these. For a polyhedral representations of something like a shuttlecraft from Star Trek, though, such as this one, these symmetry-types must be abandoned.

Image credit:  I made this using Stella 4d, available at www.software3d.com/Stella.php.

A Polyhedral Boomerang, in Flight

boomerang

Most of the polyhedra I post here have one of the symmetry-types which are collectively called “polyhedral” symmetry: tetrahedral, cuboctahedral, icosidodecahedral, or chiral variants of these. For polyhedral representations of most real-world objects, though, such as this one, these symmetry-types must be abandoned.

Image credit:  I made this using Stella 4d, available at www.software3d.com/Stella.php.

A Compound of an Icosahedron and the First Stellation of the Rhombic Triacontahedron

Compound of an icosahedron and the 1st stellation of the RTC

I stumbled across this compound yesterday, an example of exploratory polyhedral manipulation using Stella 4d producing an unexpected result. If you would like to experiment with a free trial download of this program, before deciding whether or not to purchase the fully-functioning version, simply click here:  www.software3d.com/Stella.php.

On Polyhedral Cages, a Form of Geometrical Art, with Seven Examples

I’ve posted polyhedral cages before — it simply never occurred to me to call such objects by that term. I often tag them as art / geometrical art, rather than mathematics, for they are not true polyhedra, by the generally accepted definition, where edges must involve faces meeting in pairs. Polyhedral cages do not follow this rule, so calling them mathematics causes problems. To do mathematics, after all, is to play games with numbers, and other ideas, according to the rules, with these rules being discovered as we discover new theorems. The rules are respected for one reason alone:  we know they work. If one breaks these rules with, say, a geometric figure, on aesthetic grounds, one is crossing the boundary between mathematics and geometrical art.

The reason for hiding faces of polyhedra is usually aesthetic, not mathematical. I use software called Stella 4d, available at www.software3d.com/Stella.php, to manipulate polyhedra in numerous different ways, trying to discover “new” polyhedra — new, that is, in the sense that these discoveries (not inventions) were never seen before I saw them on my computer screen. When you see a rotating geometrical picture on this blog, such as any of the ones at the bottom of this post, it was created using Stella.

Every now and then, I stumble upon a polyhedron which would look better if selected faces were simply made to disappear — and with Stella, that’s easy. They still exist in the polyhedron, in Stella‘s “mind,” but are rendered invisible in the on-screen image, thus creating the appearance of holes in the polyhedron’s surface. If these holes are regarded as real — “real” in the somewhat confusing sense that there’s nothing where the holes are, holes being absences of what surrounds them — then the former polyhedron is now a polyhedral cage. Here are several examples.  

electric dodecahedron

6xDual of Convex hullhollow rtc chiral varietyZonohedrifiedgfd DodecaZonohedrified DodecaFaceted Cogdfngfvex hull

Dodecahedral Cluster of Cuboctahedra and Icosidodecahedra

Augmented IcosidodDSJFGSca

I made this using Stella 4d:  Polyhedron Navigator, software you may try for yourself at http://www.software3d.com/Stella.php.