A Zome Construction, Mostly of Rhombi

The yellow figure is a rhombic dodecahedron, and the red pieces form six rhombi which intersect the faces of the yellow figure. There are also hypershort red struts connecting the red rhombi to each other. It’s not exactly a polyhedron, but I had fun making it. I built it using Zome, which you can buy for yourself at http://www.zometool.com.

Two Zome Compounds: Five Cubes, and Five Rhombic Dodecahedra

The blue figure in the center of this model is the compound of five cubes. If you take a cube, and build pyramids of just the right height on each of that cube’s faces, those pyramids form a rhombic dodecahedron, as seen below.

In the model at the top of this post, yellow rhombic dodecahedra have been built around each cube in the compound of five cubes. The yellow figure in the top is, therefore, the compound of five rhombic dodecahedra.

I made these models out of Zome. If you’d like to try Zome for yourself, the place to go to buy it is http://www.zometool.com.

A Zome Model of the Compound of the Icosidodecahedron and Its Dual, the Rhombic Triacontahedron

The polyhedral compound above contains an icosidodecahedron (blue) and a rhombic triacontahedron (red). In this compound, the icosidodecahedron’s edges are bisected, while the rhombic triacontahedron’s edges are split into segments with lengths in the square of the golden ratio (~2.618 to 1).

If you want Zome of your own, the place to buy it is http://www.zometool.com.

Three Zome Constructions I Made With Students in 2012

Zome can be rearranged in trillions of ways. Here are three of them.

I found these yesterday in Facebook’s “10 years ago” memories it likes to give me every day. If you want to get your own Zome, the website to visit is http://www.zometool.com.

A Rhombic Enneacontahedron, Made of Zome

Zome is a ball-and-stick modeling system which can be used to make millions of different polyhedra. If you’d like to get some Zome for yourself, just visit http://www.zometool.com.

A Zome Torus, Before and After Adding Dodecahedra, As a Model for a Pulsar’s Accretion Disk and Radiation Jets

I’ve been using Zometools, available at http://www.zometool.com, to build interesting geometrical shapes since long before I started this blog. I recently found this: a 2011 photograph of myself, holding a twisting Zome torus. While I don’t remember who was holding the camera, I do remember that the torus is made of adjacent parallelopipeds.

After building this torus, I imagined it as an accretion disk surrounding a neutron star — and now I am imagining it as a neutron star on the verge of gaining enough mass, from the accretion disk, to become a black hole. Such an object would emit intense jets of high-energy radiation in opposite directions, along the rotational axis of this neutron star. These jets of radiation are perpendicular to the plane in which the rotation takes place, and these two opposite directions are made visible in this manner, below, as two dodecahedra pointing out, on opposite sides of the torus — at least if my model is held at just the right angle, relative to the direction the camera is pointing, as shown below, to create an illusion of perpendicularity. The two photographs were taken on the same day.

In reality, of course, these jets of radiation would be much narrower than this photograph suggests, and the accretion disk would be flatter and wider. When one of the radiation jets from such neutron stars just happens to periodically point at us, often at thousands of times per second, we call such rapidly-rotating objects pulsars. Fortunately for us, there are no pulsars near Earth.

It would take an extremely long time for a black hole to form, from a neutron star, in this manner. This is because most of the incoming mass and energy (mostly mass, from the accretion disk) leaves this thermodynamic system as outgoing mass and energy (mostly energy, in the radiation jets), mass and energy being equivalent via the most famous formula in all of science: E = mc².

Zome Hyperdodecahedron

This is one projection of the four-dimensional hyperdodecahedron, or 120-cell, rendered in Zome. All the part for this come in a single kit, and, if you want it for yourself, you can find it for sale at this website.

I did have student help with the construction of this, for which I am grateful. However, for legal and ethical reasons, I cannot credit the students by name.

Here’s a closer view, through the “core” of all-blue pentagons:

Zome is a great product. I recommend it strongly, and without reservation (and no, they aren’t paying me anything to write this).

The Compound of Five Cubes, Rendered in Five Colors of Zome

Ordinarily, with Zometools, the compound of five cubes is an all-blue model. However, I wanted to build one in which each cube is a different color, so I made a special request to the Zometool Corporation (their website: http://www.zometool.com) for some off-color parts, to make this possible.

The five colors used in this model are standard blue, a darker shade of blue, red, yellow, and black.

I also received the struts needed to build this model with one cube in white, so I will be making a second version of this soon. I didn’t want the Zomeballs used to match any strut color, though, so I will have to wait for the shipment of purple Zomeballs I ordered, today, to arrive, before I can build that model.

Zome is a fantastic tool to use for mathematical investigations, as well as education, and other applications as well. I recommend this product highly, and without reservation.

My Third Solution to the Zome Cryptocube Puzzle

The President of the Zometool Corporation, Carlos Neumann, gave me a challenge, not long ago: find a solution to the Zome Cryptocube puzzle which uses only B0s, which I call “tiny blue struts.” For the Cryptocube puzzle, though, these “blue” struts actually appear white. Carlos knows me well, and knows I cannot resist a challenge involving Zome. Here is what I came up with, before the removal of the black cube, which is what the Zome Cryptocube puzzle starts with.

In a “pure” Crypocube solution, the red Zomeballs would also be white — not just the “blue” struts. However, when Carlos issued this challenge, I was at home, with all the white Zomeballs I own located at the school where I teach — so I used red Zomeballs, instead, since I had them at home, and did not wish to wait.

Here’s what this Cryptocube solution looks like, without the black cube’s black struts. You can still “see” the black cube, though, for the black Zomeballs which are the eight corners of the black cube are still present. As is happens, this particular Cryptocube solution has pyritohedral symmetry — better known as the symmetry of a standard volleyball.

While the Cryptocube puzzle is not currently available on the Zome website, http://www.zometool.com, it should be there soon — hopefully, in time for this excellent Zome kit to be bought as a Christmas present. Once a child is old enough so that small parts present no choking hazard, that child is old enough to start playing with Zome — and it is my firm belief that such play stimulates the intellectual growth of both children and adults. As far as a maximum age where Zome is an appropriate Christmas gift, the answer to that is simple: there isn’t one.

Also: while I do openly advertise Zome, I do not get paid to do so. I do this unpaid advertising for one reason: I firmly believe that Zome is a fantastic product, especially for those interested in mathematics, or for those who wish to develop an interest in mathematics — especially geometry. Also, Zome is fun!