A 182-Faced Convex Hull, with an Explanation of that Term, As It Relates to Polyhedra

Image

A 182-Faced Convex Hull

I made this polyhedron, using Stella 4d: Polyhedron Navigator, by taking the convex hull of a different polyhedron, one not shown here. To those who don’t already know, though, that just raises a question:  what does it mean to “take the convex hull” of a polyhedron? Precisely-worded mathematical definitions of “convex hull” are easy to find, using Google and/or Wikipedia, but I have a more informal definition — one which matches the way I actually think about this operation one can perform on polyhedra.

Here’s how I picture the process: imagine a thin, spherical rubber sheet is surrounding, but not touching, the starting polyhedron. Next, start shrinking the rubber sheet. It can touch the polyhedron inside it (which might be non-convex), but it cannot penetrate any of its faces. Keep shrinking the sheet until it gets caught at points on the polyhedron inside, and then keep shrinking it further. When it starts to stretch, keep going. Stop just before the rubber sheet starts to burst from being over-stretched — and the shape of the rubber sheet, at that point, is the convex hull of the polyhedron inside it. Stretching the rubber sheet, to the limit, ensures that the convex hull will only have flat, polygonal faces — not any sort of curved surfaces.

Here’s an example — one that will end with a different convex hull than the one found at the top on this post. I’ll start with a great rhombcuboctahedron, which is also known as a great rhombicuboctahedron, as well as a truncated cuboctahedron.

Trunc Cubocta

If I take the convex hull of this great rhombcuboctahedron, the result is simply another great rhombcuboctahedron — the very thing I started with — which doesn’t explain much. Therefore, before taking the convex hull, I’m going to alter it. This can be done in many ways, of course. I’m choosing augmentation of each face with prisms, and setting the prism-height at twice the edge length of these faces. Here’s the result.

Trunc Cubocta

Taking the convex hull of this doesn’t return this same polyhedron, as it would have before the augmentation-with-prisms. Instead, after the “stretching of the imaginary rubber sheet,” this is the result:

Convex hull 1

In this image, the faces that are unmoved still have their original colors. There are also many new faces, of varying types, which were created in the “convex hulling” process. All of these new faces are shown in the same drab-green color.

The next step, changing the color scheme, has little (if any) mathematical significance, but it certainly does increase the attractiveness of the result — and admiration of beauty is, and always has been, a major motivating force in the millenia-old study of polyhedra. I’m choosing a color scheme which gives each face-type a separate color, and also lets the red, yellow, and dark blue keep their same colors.

Convex hull 2

If you’d like to try Stella 4d for yourself, please visit www.software3d.com/Stella.php. A free trial download is available.

Sixty Flying Kites

Image

Sixty Flying Kites

Software credit: see http://www.software3d.com/Stella.php to learn more about the software (Stella 4d) I used to make this image. A free trial download is available.

A 102-Faced Polyhedron Featuring Regular Pentadecagons

Image

A 102-Faced Polyhedron Featuring Regular Pentadecagons

This is a stellation of a slightly-modified version of the second polyhedron shown in the last post here. It includes twelve regular pentadecagons, thirty rectangles, and sixty irregular pentagons, grouped in twenty sets of three pentagons each.

Software credit: please visit http://www.software3d.com/Stella.php if you’d like to try a free trial download of Stella 4d, the program I use to make these virtual models.

Two Symmetrohedra Featuring Regular Pentadecagons

Image

92 faces including 20 reg hexagons and 12 regular pentadecagons

I’ve posted “bowtie” symmetrohedra on this blog, before, which I thought I had discovered before anyone else — only to find, later, that other researchers had found the exact same polyhedra first. Those posts have now been edited to include credit to the original discoverers. With polyhedra, finding something interesting, for the first time ever, is extremely difficult. This time, though, I think I have succeeded — by starting with the idea of using regular pentadecagons as faces.

Software credit: Stella 4d was the tool I used to create this virtual model. You can try a free trial download of this program here: http://www.software3d.com/Stella.php.

*** *** ***

Update:  once again, I have been beaten to the punch! A bit of googling revealed that Craig Kaplan and George Hart found this particular symmetrohedron before I did, and you can see it among the many diagrams in this paper: http://archive.bridgesmathart.org/2001/bridges2001-21.pdf.

You’ll also find, in that same paper, a version of this second pentadecagon-based symmetrohedron:

15_2

There is a minor difference, though, between the Kaplan-Hart version of this second symmetrohedron, and mine, and it involves the thirty blue faces. I adjusted the distance between the pentadecagons and the polyhedron’s center, repeatedly, until I got these blue faces very close to being perfect squares. They’re actually rectangles, but just barely; the difference in length between the longer and shorter edges of these near-squares is less than 1%. I have verified that, with more work, it would be possible to make these blue faces into true squares, while also keeping the pentadecagons and triangles regular. I may actually do this, someday, but not today. Simply constructing the two symmetrohedra shown in this post took at least two hours, and, right now, I’m simply too tired to continue!

Polyhedral Quilt Pattern

Image

Polyhedral Quilt Pattern II

I made this using Stella 4d, which you may try for free at http://www.software3d.com/Stella.php.

A Rotating Great Rhombicosidodecahedron, with Spinning Mandalas On Its Faces

Image

A Rotating Great Rhombicosidodecahedron, with Spinning Mandalas On Its Faces

This polyhedron is also known as the truncated icosidodecahedron. However, I prefer the name which appears in the title of this post.

I made the image which appears on each face with Geometer’s Sketchpad and MS-Paint, and then used Stella 4d to project this image onto each face of this polyhedron, and create this rotating .gif image.

If you’d like to try Stella 4d for free, just visit this site: http://www.software3d.com/Stella.php. To my knowledge, a free trial download is only available for Stella 4d, but not for the other programs mentioned above.

You Must Obey the Speed Limit

Image

You Must Obey the Speed Limit

Only Nine School Days Left This Year

Image

Only Nine School Days Left This Year

Due to an unusual amount of Winter weather this school year, the school year where I teach has been extended to June 6, creating what many are calling “the school year that will not end.” It will end, of course, but the already-long wait for Summer vacation is getting to many of us — students, parents, teachers, and administrators alike.

The countdown is now at nine school days left: four next week, and five the week after that. In honor of this point in the countdown, I created this image based on the number nine, using Geometer’s Sketchpad and MS-Paint.

Stained-Glass Polyhedron

Image

Stained-Glass Polyhedron

Created using Stella 4d, software available at http://www.software3d.com/Stella.php.

Cuboctahedron with Mandalas

Image

Cuboctahedron with Mandalas

The images on the faces of this polyhedron may be seen in still black and white in the previous post. I used Geometer’s Sketchpad and MS-Paint to make the flat image, and then Stella 4d to put it all together. You may try Stella for free at http://www.software3d.com/Stella.php.