Zome: Strut-Length Chart and Product Review

This chart shows strut-lengths for all the Zomestruts available here (http://www.zometool.com/bulk-parts/), as well as the now-discontinued (and therefore shaded differently) B3, Y3, and R3 struts, which are still found in older Zome collections, such as my own, which has been at least 14 years in the making.

Zome

In my opinion, the best buy on the Zome website that’s under $200 is the “Hyperdo” kit, at http://www.zometool.com/the-hyperdo/, and the main page for the Zome company’s website is http://www.zometool.com/. I know of no other physical modeling system, both in mathematics and several sciences, which exceeds Zome — in either quality or usefulness. I’ve used it in the classroom, with great success, for many years.

The 9-81-90 Triangle

In a previous post (right here), I explained the 18-72-90 triangle, derived from the regular pentagon. It looks like this:

18-72-90 triangle

I’m now going to attempt derivation of another “extra-special right triangle” by applying half-angle trigonometric identities to the 18º angle. After looking over the options, I’m choosing cot(θ/2) = csc(θ) + cot(θ). By this identity, cot(9°) = csc(18°) + cot(18°) = 1 + sqrt(5) + sqrt[2sqrt(5) + 5].

Since cotangent equals adjacent over opposite, this means that, in a 9-81-90 triangle, the side adjacent to the 9° angle has a length of 1 + sqrt(5) + sqrt[2sqrt(5) + 5], while the side opposite the 9° angle has a length of 1. All that remains, now, is to use the Pythagorean Theorem to find the length of the hypotenuse.

By the Pythagorean Theorem, and calling the hypotenuse h, we know that h² = (1)² + {[1 + sqrt(5)] + sqrt[2sqrt(5) + 5]}² = 1 + {2[(1 + √5)/2] + sqrt[(2√5) + 5]}² = 1 + {2φ + sqrt[(2√5) + 5]}², where φ = the Golden Ratio, or (1 + √5)/2, since I want to use the property of this number, later, that φ² = φ + 1.

Solving for h, h = sqrt(1 + {2φ + sqrt[(2√5) + 5]}²) = sqrt{1 + 4φ² + (2)2φsqrt[(2√5) + 5] + (2√5) + 5} = sqrt{6 + 4(φ + 1) + 4φsqrt[(2√5) + 5] + (2√5)} = sqrt{6 + 4φ + 4 + 4φsqrt[(2√5) + 5] + (2√5)} = sqrt{10 + 4[(1 + √5)/2] + 4φsqrt[(2√5) + 5] + (2√5)} = sqrt{10 + 2 + (2√5) + 4φsqrt[(2√5) + 5] + (2√5)} = sqrt{12 + (4√5) + 4[1 + √5)/2]sqrt[(2√5) + 5]} = sqrt{12 + (4√5) + (2 + 2√5)sqrt[(2√5) + 5]}, the length of the hypotenuse. Here, then, is the 9-81-90 triangle:

9-81-90 triangle