On Consistent and Inconsistent Combining of Chiralities, Using Polyhedral Augmentation

For any given chiral polyhedron, a way already exists to combine it with its own mirror-image — by creating a compound. However, using augmentation, rather than compounding, opens up new possibilities.

The most well-known chiral polyhedron is the snub cube. This reflection of it will be referred to here using the letter “A.”

Snub Cube ATo avoid unnecessary confusion, the same direction of rotation is used throughout this post. Apart from that, though, the image below, “Snub Cube B,” is the reflection of the first snub cube shown.

Snub Cube B

There are many ways to modify polyhedra, and one of them is augmentation. One way to augment a snub cube is to attach additional snub cubes to each square face of a central snub cube, creating a cluster of seven snub cubes. In the next image, all seven are of the “A” variety.

Snub Cube seven of them  AA

If one examines the reflection of this cluster of seven “A” snub cubes, all seven, in the reflection, are of the “B” variety, as shown here:

Snub Cube seven of them BB

Even though one is the reflection of the other, both clusters of seven snub cubes above have something in common: consistent chirality. As the next image shows, inconsistent chirality is also possible.

Snub Cube A augmented with B

The cluster shown immediately above has a central snub cube of the “A” variety, but is augmented with six “B”-variety snub cubes. It therefore exhibits inconsistent chirality, as does its reflection, a “B” snub cube augmented with “A” snub cubes:

Snub Cube B augmented with A

With simple seven-part snub-cube  clusters formed by augmentation of a central snub cube’s square faces by six snub cubes of identical chirality to each other, this exhausts the four possibilities. However, multiplying the possibilities would be easy, by adding more components, using other polyhedra, mixing chiralities within the set of polyhedra added during an augmentation, and/or mixing consistent and inconsistent chirality, at different stages of the growth of a polyhedral cluster formed via repeated augmentation.

All the images in this post were created using Stella 4d, which you can try for yourself at this website.

Compound of the Great and Small Stellated Dodecahedra

Compound of Great Stellated Dodeca and Small Stellated Dodeca color scheme 2

In this compound, as shown above, the small stellated dodecahedron is yellow, while the red polyhedron is the great stellated dodecahedron. Below, the same compound is colored differently; each face has its own color, unless faces are in parallel planes, in which case they have the same color.

Compound of Great Stellated Dodeca and Small Stellated Dodeca color scheme 1

Making a physical model of this compound would have taken most of the day, if I did it using such things as posterboard or card stock, compass, ruler, tape, scissors, and pencils. For the first several years I built models of polyhedra, starting about nineteen years ago, that was how I built such models. The virtual polyhedra shown above, by contrast, took about ten minutes to make, using Stella 4d: Polyhedron Navigator, which you can try for free, or purchase, here.

There’s also a middle path: using Stella to print out nets on cardstock, cutting them out, and then taping or gluing these Stella-generated nets together to make physical models. I haven’t spent much time on this road myself, but I have several friends who have, including the creator of Stella. You can see some of his incredible models here, and some amazing photographs of other Stella users’ paper models, as well as some in other media, at this website.