Dodecahedral Cluster of Cuboctahedra and Icosidodecahedra

Augmented IcosidodDSJFGSca

I made this using Stella 4d:  Polyhedron Navigator, software you may try for yourself at http://www.software3d.com/Stella.php.

A Simulation of Crystalline Growth Using Polyhedral Augmentation

Crystals and crystalline growth have been studied for centuries because of, at least in part, their symmetry. Crystals are cut in such a way as to increase this symmetry even more, because most people find symmetry attractive. However, where does the original symmetry in a crystal come from? Without it, jewelers who cut gemstones would not exist, for the symmetry of crystalline minerals themselves is what gives such professionals the raw materials with which to work.

To understand anything about how crystals grow, one must look at a bit of chemistry. The growth of crystals:

  • Involves very small pieces:  atoms, molecules, ions, and/or polyatomic ions
  • Involves a small set of simple rules for how these small pieces attach to each other

Why small pieces? That’s easy:  we live in a universe where atoms are tiny, compared to anything we can see. Why is the number of rules for combining parts small, though? Well, in some materials, there are, instead, large numbers of ways that atoms, etc., arrange themselves — and when that happens, the result, on the scale we can see, is simply a mess. Keep the number of ways parts can combine extremely limited, though, and it is more likely that the result will possess the symmetry which is the source of the aesthetic appeal of crystals.

This can be modeled, mathematically, by using polyhedral clusters. For example, I can take a tetrahedron, and them augment each of its four faces with a rhombicosidodecahedron. The result is this tetrahedral cluster:

Image

Next, having chosen my building blocks, I need a set of rules for combining them. I choose, for this example, these three:

  1. Only attach one tetrahedral cluster of rhombicosidodechedra to another at triangular faces — and only use those four triangles, one on each rhombicosidodecahedron, which are at the greatest distance from the cluster’s center.
  2. Don’t allow one tetrahedral cluster to overlap another one.
  3. When you add a tetrahedral cluster in one location, also add others which are in identical locations in the overall, growing cluster.

Using these rules, the first augmentation produces this:

Image

That, in turn, leads to this:

Image

Next, after another round of augmentation:

Image

One more:

Image

In nature, of course, far more steps than this are needed to produce a crystal large enough to be visible. Different crystals, of course, have different shapes and symmetries. How can this simulation-method be altered to model different types of crystalline growth? Simple:  use different polyhedra, and/or change the rules you select as augmentation guidelines, and you’ll get a different result.

[Note:  all of these images were created using Stella 4d: Polyhedron Navigator. This program is available at http://www.software3d.com/Stella.php.]

 

Sprawling Clusters of Truncated Tetrahedra

Truncated tetrahedra make interesting building blocks. In the images below, the truncated tetrahedron “atoms” are grouped into four-part “molecules,” each with a triangular face pointed toward the molecular center, which is found in a small tetrahedral hole between the four truncated tetrahedra. These four-part “molecules” are then attached to other,  always with three coplanar triangular faces from one “molecule” meeting three from the other. If you start from a central “molecule,” and let such a cluster grow for a small number of iterations, you get this:

Cluster Truncateed Tetra

What does the cluster above look like if even more truncated tetrahedra are added, but without allowing overlap to occur? Like this:

Image

Like the truncated tetrahedron itself, these sprawling clusters have tetrahedral symmetry. To keep such symmetry while building these clusters, of course, one must be careful about the exact placement of the pieces — and doing this becomes more difficult as the cluster grows ever larger. I was able to take this one more step:

Image

All of these images were created using Stella 4d: Polyhedron Navigator. This program is available at http://www.software3d.com/Stella.php.

 

Multiple Octahedra, in a Rotating Cluster with Tetrahedral Symmetry

Image

Multiple Octahedra, in a Rotating Cluster with Tetrahedral Symmetry

I created this cluster using Stella 4d: Polyhedron Navigator. This program is available at http://www.software3d.com/Stella.php.

Dodecahedral Cluster of Truncated Dodecahedra

Image

Dodecahedral Cluster of Truncated Dodecahedra

I made this using Stella 4d, which you can find right here: http://www.software3d.com/Stella.php.

An Octahedron, Augmented with Eight Great Icosahedra, and the Dual of this Augmented Polyhedral Cluster

Image

An Octahedron, Augmented with Eight Great Icosahedra, and the Dual of this Augmented Polyhedral Cluster

I made these using Stella 4d, which you can try at http://www.software3d.com/Stella.php. Here is its dual, also:

GrIcosadual-Augmented Octa

 

 

An Icosahedron, Augmented with Twenty Great Icosahedra

Image

An Icosahedron, Augmented with Twenty Great Icosahedra

The picture above uses symmetry to divide the faces of this polyhedral cluster into color groups. This next one puts faces in the same color-group if and only if they are parallel.

icosa  Augmented with Great Icosa with parallel faces a color-set

Stellating this once yielded this result, again colored by face-type, like the first image here:

1st stellation of great icosa - augmented icosahedron

I made these using Stella 4d, which you can try at www.software3d.com/Stella.php.

Odd Polyhedral Cluster

Image

Odd Polyhedral Cluster

I stumbled upon this while using Stella 4d to modify existing polyhedra. You may find this program at http://www.software3d.com/Stella.php.

The Great Rhombcuboctahedron As a Building-Block

Image

The Great Rhombcuboctahedron As a Building-Block

This solid, also known as the great rhombicuboctahedron, and the truncated icosidodecahedron, can be used to build many other things. In addition to the elongated ring of eight above, for example, there’s this octagonal prism.

Augmented Trunc Cubocta2

Augmented Trunc Cubocta 2

Remember the elongated ring at the top of this post? This pic, directly above, is of a ring of four of those rings.

Augmented Trunc Cubocta3

And, yes, that’s a (non-great) rhombcuboctahedron made of great rhombcuboctahedra. Here it is again, with a different color-scheme.

Augmented Trunc Cubocta4

For the last of these constructions, eight more great rhombcuboctahedra are added to the figure in the two posts above, which is also returned to its original color-configuration. These eight new polyhedra have positions which correspond to the corners of a cube.

augmented rhombcuboctahedron made of great rhombcuboctahedra

Manipulating polyhedra in this manner is easy with Stella 4d, the program I used to do all of this. You may buy it, and/or try a free trial version first, at www.software3d.com/Stella.php.

A Space-Filling Pair of Polyhedra: The Cuboctahedron and the Octahedron

Image

A Space-Filling Pair of Polyhedra:  The Cuboctahedron and the Octahedron

There are only a few polyhedra which can fill space without leaving gaps, without “help” from a second polyhedron. This filling of space is the three-dimensional version of tessellating a plane. Among those that can do this are the cube, the truncated octahedron, and the rhombic dodecahedron.

If multiple polyhedra are allowed in a space-filling pattern, this opens new possibilities. Here is one: the filling of space by cuboctahedra and octahedra. There are others, and they are likely to appear as future blog-posts here.

Software credit: I made this virtual model using Stella 4d, polyhedral-manipulation software you can buy, or try as a free trial download, at http://www.software3d.com/Stella.php.