A Second Coloring-Scheme for the Chiral Tetrated Dodecahedron

For detailed information on this newly-discovered polyhedron, which is near (or possibly in) the “fuzzy” border-zone between the “near-misses” (irregularities real, but not visually apparent) and “near-near-misses” (irregularities barely visible, but there they are) to the Johnson solids, please see the post immediately before this one. In this post, I simply want to introduce a new coloring-scheme for the chiral tetrated dodecahedron — one with three colors, rather than the four seen in the last post.

chiral tet dod 2nd color scheme

In the image above, the two colors of triangle are used to distinguish equilateral triangles (blue) from merely-isosceles triangles (yellow), with these yellow triangles all occurring in pairs, with their bases (slightly longer than their legs) touching, within each pair. This is the same coloring-scheme used for over a decade in most images of the (original and non-chiral) tetrated dodecahedron, such as the one below.

Tetrated Dodeca

Both of these images were created using polyhedral-navigation software, Stella 4d, which is available here, both for purchase and as a free trial download.

[Later edit: I have now found out I was not the first person to find what I had thought, earlier today, was an original discovery. What I have simply named the chiral tetrated dodecahedron has been on the Internet, in German, since 2008, or possibly earlier, and may be seen here: http://3doro.de/polyeder/.]

The Chiral Tetrated Dodecahedron: A New Near-Miss?

The images above show a new near-miss (to the Johnson solids) candidate I just found using Stella 4d, software you can try here. Like the original tetrated dodecahedron (a recognized near-miss shown at left, below), making this polyhedron relies on splitting the Platonic dodecahedron into four three-pentagon panels, moving them apart, and filling the gaps with triangles. Unlike that polyhedron, though, this new near-miss candidate is chiral, as you can see by comparing the left- and right-handed versions, above. The image at the right, below, is the compound of these two enantiomers.

Next are shown nets for both the left- and right-handed versions of the chiral tetrated dodecahedron (on the right, top and bottom), along with the dual of this newly-discovered polyhedron (on the left). Like the rest of the images in this post, any of them may be enlarged with a click.

A key consideration when it is decided if the chiral tetrated dodecahedron will be accepted by the community of polyhedral enthusiasts as a near-miss (almost a Johnson solid), or will be relegated to the less-strict set of “near-near-misses,” will be measures of deviancy from regularity.The pentagons and green triangles are regular, with the same edge length. The blue and yellow triangles are isosceles, with their bases located where blue meets yellow. These bases are each ~9.8% longer than the other edges of the chiral tetrated dodecahedron. By comparison, the longer edges of the original tetrated dodecahedron, where one yellow isosceles triangle meets another, are ~7.0% longer than the other edges of that polyhedron. Also, in the original, the vertex angle of these isosceles triangles measures ~64.7°, while the corresponding figure is ~66.6° for the chiral tetrated dodecahedron.

[Later edit: I have now found out I was not the first person to find what I had thought, earlier today, was an original discovery. What I have simply named the chiral tetrated dodecahedron has been on the Internet, in German, since 2008, or possibly earlier, and may be seen here: http://3doro.de/polyeder/.]

The Archimedean Solid That Isn’t

A common definition for “Archimedean solid” goes like this:  Archimedean solids (1) are convex polyhedra, (2) include only faces which are regular, convex, non-intersecting polygons, (3) have more than one type of regular polygon used as faces, and (4) have the same set of polygons meeting at each vertex, in the same pattern. Archimedes himself enumerated the thirteen Archimedean solids, noted that two of them have mirror-images, and it has been proven that no more exist . . . provided the definition above is tweaked, just a little. Why isn’t this definition adequate? Here’s why.

ImageImage

By the definition given above, both of these polyhedra qualify as Archimedean solids . . . but only the top one is included in the official set of thirteen. It’s called the rhombcuboctahedron (or the rhombicuboctahedron). Both polyhedra shown have eighteen square faces, and eight triangular faces, all regular. In each one, also, the face-pattern around each vertex is square/square/square/triangle. However, the bottom figure, despite this, is not considered an Archimedean solid. Its existence is the reason — the only reason, to my knowledge — that the definition given above for the Archimedean solids is inadequate.

When I first encountered these two polyhedra side-by-side, I was reading Peter Cromwell’s excellent book, Polyhedra, and it showed them as simple black-and-white wire-frame images. It took an embarrassing amount of time for me to spot the difference between them, so please don’t feel bad if you also are having trouble seeing it. To spot the difference, if you haven’t already, watch the triangles. In the top image, which is a true Archimedean solid, the four triangles at the top of the polyhedron stay right above the corresponding four triangles at the bottom of the same polyhedron. In the second image, however, this is not the case, due to a 45° rotation of the bottom “cap” of the first polyhedron shown showing up in the second image.

To fix this problem, and exclude the second figure, an extra requirement has been added to the list that defines the Archimedean solids:  not only must each vertex be locally identical, but there must also be a global isometry shared by all vertices. In lay terms, that means that you can look at any vertex you choose, and see the same pattern for the other vertices, their orientation relative to each other, and the orientation of the faces surrounding them, as well. The first polyhedron shown here passes this test, but the second does not.

This troublesome-but-interesting second polyhedron has several names. I usually call it the pseudorhombcuboctahedron. Other names include the pseudorhombicuboctahedron (note the extra “i”), and Miller’s solid (based on the work of J.C.P. Miller, as described in Cromwell’s book). As #37 in Norman Johnson’s set of 92 Johnson solids, of which it is unambiguously a member, it is called the elongated square gyrobicupola. Finally, there are people who disagree with what I have written above . . . and they often refer to the bottom polyhedron shown as, simply, “the fourteenth Archimedean solid.”

Image credit:  both pictures above were generated using Stella 4d, software you can buy, or try for free, at www.software3d.com/Stella.php.

Expanded Truncated Icosahedron III

Image

Expanded Truncated Icosahedron III

This version of an expanded truncated icosahedron was made in a similar fashion to the one two posts ago — but with the augmentation-by-prisms step altered by using prisms of somewhat greater height, with the goal being to make the rectangular faces closer to “squareness.”

As a result, this polyhedron is closer than the others to being a near-miss to the Johnson Solids — a category of polyhedra which has been discussed on this blog before. “Near-misses” are almost Johnson solids, and must therefore have faces which are regular (as the hexagon and pentagons here are) are nearly-regular (as the rectangles and triangles come close to being).

Is this a near-miss, or is it not? That’s difficult to answer, for that set of polyhedra has no precise definition, and cannot have one — it only has a “fuzzy” definition.

In my opinion, it isn’t quite a near-miss, for the triangles are too non-equilateral to qualify, to my eye — but others might disagree. In the unlikely event that mathematicians wish to start talking about “near-near-misses,” I offer this as a member of that set.

(Software credit:  see http://www.software3d.com/stella.php for a free trial download of the software used to make these polyhedral images.)

 

A Second Version of My New Near-Miss to the Johnson Solids

Image

A Second Version of My New Near-Miss

A few days ago, I found a new near-miss to the 92 Johnson Solids. It appears on this blog, five posts ago, and looks a lot like what you see above — the differences are subtle, and will be explained below, after “near-miss” has been clarified.

A near-miss is a polyhedron which is almost a Johnson Solid. So what’s a Johnson Solid?

Well, consider all possible convex polyhedra which have only regular polygons as faces. Remove from this set the five Platonic Solids:

Next, remove the thirteen Archimedean Solids:

Now remove the infinite sets of prisms and antiprisms, the beginning of which are shown here:

What’s left? The answer to this question is known; it’s the set of Johnson Solids. It has been proven that there are exactly 92 of them:

When Norman Johnson systematically found all of these, and named them, in the late 1960s, he found a number of other polyhedra which were extremely close to being in this set. These are called the “near misses.” An example of a near-miss is the tetrated dodecahedron, which I co-discovered, and named, about a decade ago:

If you go to http://www.software3d.com/Stella.php, you can download a free trial version of software, Stella 4d, written by a friend of mine, Robert Webb (RW), which I used to generate this last image, as well as the rotating .gif which starts this post. (The still pictures were simply found using Google image-searches.) Stella 4d has a built-in library of near-misses, including the tetrated dodecahedron . . . but it doesn’t have all of them.

Well, why not? The reason is simple: the near-misses have no precise definition. They are simply “almost,” but not quite, Johnson Solids. In the case of the tetrated dodecahedron, what keeps it from being a Johnson Solid is the edges where yellow triangles meet other yellow triangles. These edges must be ~7% longer than the other edges, so the yellow triangles, unlike the other faces, are not quite regular — merely close.

There is no way to justify an arbitrary rule for just how close a near-miss must be to “Johnsonhood” be considered an “official” near-miss, so mathematicians have made no such rule. Research to find more near-misses is ongoing, and, due to the “fuzziness” of the definition, may never stop.

My informal test for a proposed near-miss is simple:  I show it to RW, and if he thinks it’s close enough to include in the near-miss library in Stella 4d, then it passes. This new one did, but not until RW found a way to improve it, using something I don’t really understand called a “spring model.” What you see at the top of this post is the result. Unlike in the previous version, the green decagons here are regular, but at the expense of regularity in the (former) blue squares, now near-squarish trapezoids, as well as the yellow hexagons. The pink hexagons are slightly irregular in both versions, and the red pentagons are regular in both.

I’m eagerly anticipating the release of the next version of Stella 4d, for this near-miss will be in it.  If I tell my students about this new discovery, they’ll want to know how much I got paid for it, which is, of course, nothing. I don’t know how to explain to them what it feels like to participate in the discovery of something — anything — which will survive me by a very long time. There’s nothing else quite like that feeling.

Now I just need to think of a good name for this thing!

[Update:   the new version of Stella is now out, and this polyhedron is now included in it. As it turns out, I no longer need to think of a name for this polyhedron, for RW took care of that for me, naming it the “zonish truncated icosahedron” in Stella‘s built-in library of polyhedra.]

Speculation Related to the Johnson Solids

Consider all possible convex polyhedra which have regular polygons as faces. Remove from this set the five Platonic Solids:

Next, remove the thirteen Archimedean Solids:

Now remove the infinite sets of prisms and antiprisms, the beginning of which are shown here:

What’s left? The answer to this question is known; it’s the set of Johnson Solids. It has been proven that there are exactly 92 of them:

When Norman Johnson systematically found all of these, and named them, in the late 1960s, he found a number of other polyhedra which were extremely close to being in this set. These are called the “near misses.” An example of a near-miss is the tetrated dodecahedron:

If you go to http://www.software3d.com/Stella.php, you can download a free trial version of software, Stella 4d, written by a friend of mine, Robert Webb, which I used to generate this last image. This program has a built-in library of near-misses . . . but it doesn’t have all of them.

Well, why not? The reason is simple: the near-misses have no precise definition. They are simply “almost,” but not quite, Johnson Solids. In the case of the tetrated dodecahedron, what keeps it from being a Johnson Solid is the edges where yellow triangles meet other yellow triangles. These edges must be ~7% longer than the other edges, so the yellow triangles, unlike the other faces, are not quite regular — merely close.

There is no way to justify an arbitrary rule for just how close a near-miss must be to “Johnsonhood” be considered an “official” near-miss, so mathematicians have made no such rule. Research to find more near-misses is ongoing, and, due to the “fuzziness” of the definition, may never stop.

I’ve played a small part in such research, myself. I’ve also been asked how much I’ve been paid for doing this work, but that question misses the point. I’ve collected no money from this, and nobody gets involved in such research in order to get rich. Those of us who do such things are motivated by the desire to have fun through indulgence of mathematical curiosity. Our reward is the pure enjoyment of trying to figure things out, and, on really good days, actually doing so.

I’m having a good day. I’m looking at the Johnson Solids in a different way, purely for fun. I have found something that may be a blind alley, but, if my fellow geometricians show me that it is, that won’t erase the fun I have already had.

Here’s what I have found today. It is not a near-miss in the same way as the tetrated dodecahedron, but is related to the Johnson Solids in a different way. Other than a “heptadecahedron” (for its seventeen faces) it has no name, as of yet:

How is this different from traditional near-misses? Please examine the net (third image). In this heptadecahedron, all of these triangles, pentagons, and the one decagon are perfectly regular, unlike the situation with traditional near-misses. However, some faces, as you can see in the 3-d model, are made of multiple, coplanar equilateral triangles, joined together. In the blue faces, two such triangles form a rhombus; in the yellow faces, three such triangles form an isosceles trapezoid. Since they are coplanar and adjacent, they are one face each, not two, nor three. The dashed lines are not folded in the 3-d model, but merely show where the equilateral triangles are.

Traditional near-misses involve relaxation of the rules for Johnson Solids to permit polyhedra with not-quite-regular faces to join a new “club.”

Well, this heptadecahedron is in a different “club.” To join it, a polyhedron must  fit the criteria for “Johnsonhood,” except that some faces may be formed by amalgamation of multiple, coplanar regular polygons.

My current subject of speculation is this: would this new club have an infinite or a finite number of members? If finite, it will, I think, be a larger number than 92. If finite, it will also be a more interesting topic to study.

I don’t know, yet, what answer this new problem has. I do know I am having fun, though. Also known: no one will pay me for this.  No one needs to, either.