Beginning the Fractiles-7 Refrigerator Experiment

To begin this experiment, I first purchased two refrigerator-sized Fractiles-7 sets (available at http://fractiles.com/), and then, early on a Sunday, quietly arranged these rhombus-shaped magnets on the refrigerator in our apartment (population: 4, which includes two math teachers and two teenagers), using a very simple pattern.

160207_0000

Here’s a close-up of the center. There are 32 each, of three types of rhombus., in this double-set, for a total of 96 rhombic magnets, all with the same edge length.

160207_0001

The number of possible arrangements of these rhombi is far greater than the population of Earth.

The next step of the experiment is simple. I wait, and see what happens.

It should be noted that there is a limit on how long I can wait before my inner mathematical drives compel me to play with these magnets more, myself — but I do not yet know the extent of that limit.

A Forgotten Mandala, from 2010

Someone found this, and “liked” it, in my old Facebook pictures. I had forgotten all about it, until this happened. It is a mandala, made of rhombi, with nine-fold symmetry, made in 2010 with Geometer’s Sketchpad — two years before I started this blog.

from 2010

A Rhombic Ring of Icosahedra, Leading to a Rhombic Dodecahedron Made of Icosahedra

As it turns out, eight icosahedra form this rhombic ring, by augmentation:

Rhombic ring of Icosa

Measured from the centers of these icosahedra, the long and short diagonal of this rhombus are in a (√2):1 ratio. How do I know this? Because that’s the only rhombus which can made this polyhedron, a rhombic dodecahedron, dual to the cuboctahedron.

RD of Augmented Icosa

This rhombic dodecahedral cluster of icosahedra could be extended to fill space, since the rhombic dodecahedron itself has this property, an unusual property for polyhedra. Whether space-filling or not, the number of icosahedron per rhombic-dodecahedron edge could be increased to 5, 7, 9, or any greater odd number. Why would even numbers not work? This is a consequence of the fact that opposite faces of an icosahedron are inverted, relative to each other; a pair of icosahedra (or more than one pair, producing odd numbers > 1 when added to the vertex-icosahedron) must be attached to the one at a rhombic-dodecahedron-vertex to make these two inversions bring the triangular face back around to its original orientation, via an even number of half-rotations, without which this consruction of these icosahedral rhombi cannot happen.

Here’s another view of this rhombic dodecahedron, in “rainbow color” mode:

RD of Augmented Icosa RB

All images above were produced using Stella 4d, software which may be tried for free right here.

Polygons Related to the Golden Ratio, and Associated Figures in Geometry, Part 2: Quadrilaterals

The golden ratio, also known as φ, has a value of [1 + sqrt(5)]/2, or ~1.61803. It is associated with a great many figures in geometry, and also appears in numerous other contexts. The most well-known relationship between a geometric figure and the golden ratio is the golden rectangle, which has a length:width ratio equal to the golden ratio. An interesting property of the golden rectangle is that, if a square is removed from it, the remaining portion is simply a smaller golden rectangle — and this process can be continued without limit.

golden rectangle

While the golden ratio is related to many polyhedra, this relationship does not always involve golden rectangles, but sometimes it does. For example, it is possible to modify a rhombicosidodecahedron, by replacing that figure’s squares with golden rectangles (with the longest side adjacent to the triangles, not the pentagons), to obtain a “Zomeball” — the node which is at the heart of the Zometool ball-and-stick modeling system for polyhedra, and other phenomena. The entire Zome system is based on the golden ratio. Zome kits are available for purchase at http://www.zometool.com, and this image of a Zomeball was found at http://www.graphics.rwth-aachen.de/media/resource_images/zomeball.png.

zomeball

In some cases, the relationship between a golden rectangle, and a polyhedron, is more subtle. For example, consider three mutually-perpendicular golden rectangles, each with the same center:

3 GOLDEN RECTANGLES

While this is not, itself, a polyhedron, it is possible to create a polyhedron from it, by creating its convex hull. A convex hull is simply the smallest convex polyhedron which can contain a given figure in space. For the three golden rectangles above, the convex hull is the icosahedron, one of the Platonic solids:

ICOSAl

In addition to the golden rectangle, there are also other quadrilaterals related to the golden ratio. For example, a figure known as a golden rhombus is formed by simply connecting the midpoints of the sides of a golden rectangle. The resulting rhombus has diagonals which are in the golden ratio.

golden rhombus

One of the Archimedean solids, the icosidodecahedron, has a dual called the rhombic triacontahedron. The rhombic triacontahedron has thirty faces, and all of them are golden rhombi.

Rhombic Triaconta

There are also other polyhedra which have golden rhombi for faces. One of them, called the rhombic hexacontahedron (or “hexecontahedron,” in some sources), is actually the 26th stellation of the rhombic triacontahedron, itself. It has sixty faces, all of which are golden rhombi.

Rhombic Triaconta 26th stellation

Other quadrilaterals related to the golden ratio can be formed by reflecting the golden triangle and golden gmonon (described in the post right before this one) across each of their bases, to form two other types of rhombus.

rhombi for penrose tilings

In these two rhombi, the golden ratio shows up as the side-to-short-diagonal ratio (in the case of the 36-144-36-144 rhombus), and the long-diagonal-to-side ratio (in the case of the 72-108-72-108 rhombus). These two rhombi have a special property:  together, they can tile a plane in a pattern which never repeats itself, but, despite this, can be continued indefinitely. This “aperiodic tiling” was discovered by Roger Penrose, a physicist and mathematician. The image below, showing part of such an aperiodic tiling, was found at https://en.wikipedia.org/wiki/Penrose_tiling.

500px-Penrose_Tiling_(Rhombi).svg

There are also at least two other quadrilaterals related to the golden ratio, and they are also formed from the golden triangle and the golden gnomon. The procedure for making these figures, which could be called the “golden kite” and the “golden dart,” is similar to the one for making the rhombi for the Penrose tiling above, but has one difference: the two triangles are each reflected over a leg, rather than a base.

kite and dart for for penrose tilings

In the case of this kite and dart, it is the longer and shorter edges, in each case, which are in the golden ratio — just as is the case with the golden rectangle. Another discovery of Roger Penrose is that these two figures, also, can be used to form aperiodic tilings of the plane, as seen in this image from http://www.math.uni-bielefeld.de/~gaehler/tilings/kitedart.html.

kitedart

There is yet another quadrilateral which has strong connections to the golden ratio. I call it the golden trapezoid, and this shows how it can be made from a golden rectangle, and how it can be broken down into golden triangles and golden gnomons. However, I have not yet found an interesting polyhedron, not tiling pattern, based on golden trapezoids — but I have not finished my search, either.

golden trapezoid

[Image credits:  see above for the sources of the pictures of the two Penrose tilings, as well as the Zomeball, shown in this post. Other “flat,” nonmoving pictures I created myself, using Geometer’s Sketchpad and MS-Paint. The rotating images, however, were created using a program called Stella 4d, which is available at http://www.software3d.com/Stella.php.]

A Tessellation Using Regular Octagons, Squares, Rhombi, and Non-Convex, Equilateral Hexakaitriacontagons

Regular Octagons Squares Rhombi and Nonconvex Hexakaitriacontagons

Tessellation Featuring Squares, Regular Hexagons and Dodecagons, and Thirty Degree Rhombi

tess

A Polyhedron with Only Pentagons and Rhombi As Faces

Convemvbdsjfx hull

I made this with Stella 4d, a program you can find at http://www.software3d.com/Stella.php.

Tessellation Using Pentagons and Rhombi

Image

Tessellation Using Pentagons and Rhombi

Thirty Flying Rhombi

Image

Sixty Flying Rhombi

I used Stella 4d to make this image, and you can find that program at http://www.software3d.com/Stella.php.

A Polyhedron Featuring Sixty Irregular, Convex Hexagons and Thirty Rhombi

Image

A Polyhedron Featuring Sixty Irregular, Convex Hexagons and Thirty Rhombi

I created this using Stella 4d: Polyhedron Navigator, a program you can find at http://www.software3d.com/Stella.php.