An Experiment Involving Augmentation of Octahedra with More Octahedra, Etc.

I’m going to start this experiment with a single octahedron, with faces in two colors, placed so that two faces which share an edge are always of different colors.


Next, I will augment the red faces — and only the red faces — with identical octahedra.


The regions with four blue, adjacent faces look as though they might hold icosahedra — but I checked, and they don’t quite fit. I will therefore continue the same process — augmenting only the red faces with more octahedra of the original type.


I’ve now decided that I definitely like this game, so I’ll keep playing it.


Immediately above, at the fourth of these images, some of the octahedra have started to overlap slightly, but I’m choosing to not be bothered by that — I’m continuing the now-established pattern, just in order to see where it takes me.


The regions of overlap are now far more obvious, but I’m continuing, anyway. Why? Because this is fun, that’s why! Right now, Stella 4d, the program I use to do these polyhedral manipulations, is chugging away on the next one. (This program is avilable at Ah, it’s ready — here it is!


Rather than repeat this process again, I now have another question: what would the convex hull of this figure look like? (A convex hull of a non-convex polyhedron is the smallest convex polyhedron which can contain a given non-convex polyhedron.) With Stella 4d, that’s easily answered.

Convex hull

I must admit this: that was nothing like what I expected — but such unexpected discoveries are a large part of what makes these polyhedral investigations with Stella 4d so much fun. And now, to close this particular polyhedral journey, I will have Stella 4d produce, for me, the dual of the convex hull shown above. (In case you aren’t familiar with duality regarding polyhedra, it describes the relationship between the octahedron, with which this post began, and the familar cube. Basically, with duals, faces and verticies are “flipped” over edges, although that is an extremely informal and imprecise way to describe the at the process.)

dual of Convex hull

And with that, my friends, I bid you good night!

A Pulsating Zonohedron


A Zonohedron

This polyhedron is an example of a zonohedron — a polyhedron with faces which are all zonogons, each of which is congruent and parallel to another zonogon on the opposite side of the polyhedron.

Of course, this just raises the question, “What’s a zonogon?” It’s a special type of polygon, one with an even number of sides, and with opposite sides congruent and parallel.

The pulsating effect is just for fun — a feature which is optional in Stella 4d, the program I used to make this. I started with an icosahedron/dodecahedron compound, stellated it many times, and then zonohedrified the result. This software makes all these operations easy, and may be tried for free at

Dodecahedron with Mandalas


Dodecahedron with Mandalas

This rotating image took three different programs to create. First, I made the mandala (seen in the previous post) using Geometer’s Sketchpad. Next, I used MS-Paint to complete the colorization of it. Finally, I used Stella 4d (see if you’d like to try or buy it) to put this mandala on each face of a dodecahedron, and then create the rotating .gif you see here.

I find both Stella 4d and Geometer’s Sketchpad to be indispensable tools for mathematical investigations and the creation of geometrical art, and highly recommend both programs.


A Gallery of Polyhedra

Now that the latest version of Stella 4d allows users to make rotating .gifs, I post those here (see the last post for an example). However, before I started blogging on WordPress, I made a blog on Tumblr with many still images produced using earlier versions of Stella. Here is an example:

Convex hull

The link above is to that blog’s archive — just click on any small pic there to make it larger. Unlike other Tumblr-blogs of mine, this one has no reblogged material — it was the banality of reblogging, you see, that drove me from Tumblr in the first place.

Info on getting/trying Stella 4d for yourself: