The 43rd Stellation of the Snub Dodecahedron, and Related Polyhedra, Part One

If you stellate the snub dodecahedron 43 times, this is the result. The yellow faces are kites, not rhombi.

Stellated Snub Dodeca refl

Like the snub dodecahedron itself, this polyhedron is chiral. Here is the mirror-image of the polyhedron shown above.

Stellated Snub Dodeca 43rd mirror image

Any chiral polyhedron may be combined with its own mirror-image to create a compound.

Compound of enantiomorphic pair x

This is the dual of the snub dodecahedron’s 43rd stellation.

Stellated Snub Dodeca refl chiral dual

This dual is also chiral. Here is its reflection.

43rd stellation snub dodeca dual reflection

Finally, here is the compound of both duals.

Compound of enantiomorphic pair duals

I used Stella 4d: Polyhedron Navigator to create these images. You may try this program for yourself at

The 21st and 22nd Stellations of the Truncated Dodecahedron

Stellation of a polyhedron involves extending its faces and/or edges into space to form other polyhedra, often with a star-like appearance, which is where the words “stellation,” “stellate,” and “stellated” originate. (“Stella” is Latin for “star.”)

Since this can be done repeatedly, long stellation-series exist for many polyhedra. In the case of the truncated dodecahedron, it was the 21st and 22nd stellations which I found the most aesthetically pleasing.

Here is the 21st stellation of this polyhedron:

Trunc Dodeca 21st stellation

And here is the 22nd:

Trunc Dodeca 22nd stellation

Both of these polyhedra were created with Stella 4d, software you may try for yourself, right here.

The Final Stellation of the Compound of Five Cubes

Stellated 5 Cubes final stellation colors derived from compound

The version of the final stellation of the compound of five cubes shown above has its colors derived from the traditional five-color version of the original compound, itself. The one below, by contrast, has its colors selected by face-type, without regard for the original compound.

Stellated 5 Cubes final stellation colored by face type

Both of these virtual models were created with Stella 4d: Polyhedron Navigator, software available at this website. Also, for more about this particular polyhedron, please see the next post.

A Polyhedral Journey, Beginning with the Snub Cube / Pentagonal Isositetrahedron Base/Dual Compound

The snub cube and its dual make an attractive compound. Since the snub cube is chiral, its chirality is preserved in this compound.

Penta Icositetra & snub cube compound

If you examine the convex hull of this compound, you will find it to be chiral as well.

Convex hull of snub cube& dual compound

Here is the mirror image of that convex hull:

Convex hull mirror image

These two convex hulls, of course, have twin, chiral, duals:

dual of Convex hull of snub cube& dual compound

Dual of Convex hull mirror image

The two chiral convex hulls above (the red, blue, and yellow ones), made an interesting compound, as well.

Compound of enantiomorphic pair not dual

This is also true of their chiral duals:

Compound of enantiomorphic pair

I next stellated this last figure numerous times (I stopped counting at ~200), to obtain this polyhedron:

Stellated Compound of enantiomorphic pair dual

After seeing this, I wanted to know what its dual would look like — and it was a nice polyhedron on which to end this particular polyhedral journey.

dual of Stellated Compound of enantiomorphic pair dual

I  make these transformations of polyhedra, and create these virtual models, using a program called Stella 4d. It may be purchased, or tried for free, at

A Collection of Unusual Polyhedra

In the post directly before this one, the third image was an icosahedral cluster of icosahedra. Curious about what its convex hull would look like, I made it, and thereby saw the first polyhedron I have encountered which has 68 triangular faces.

68 triangles Convex hull

Still curious, I next examined this polyhedron’s dual. The result was an unusual 36-faced polyhedron, with a dozen irregular heptagons, and two different sets of a dozen irregular pentagons.

dual of 68 triangles Convex hull -- this dual has 36 faces including 12 heptagons and 12 each of two types of pentagon

Stella 4d (the program I used to make all these images), which is available at, has a “try to make faces regular” function, and I tried to use it on this 36-faced polyhedron. When making the faces regular is not possible, as was the case this time, it sometimes produce surprising results — and this turned out to be one of these times.

dual of the 68-triangle polyhedron after 'try to make faces regular' used

The next thing I did was to examine the dual of this latest polyhedron. The result, a cluster of tetrahedra and triangles, was completely unexpected.

dual of the dual of the 68-triangle polyhedron after 'try to make faces regular' used

The next alteration I performed was to create the convex hull of this cluster of triangles and tetrahedra.

Convex hull of that triangular mess

Having seen that, I wanted to see its dual, so I made it. It turned out to have a dozen faces which are kites, plus another dozen which are irregular pentagons.

dual of the Convex hull of that triangular mess 12 kites and 12 irregular pentagons

Next, I tried the “try to make faces regular” function again — and, once more, was surprised by the result.

dozen kites and dozen pentagons after 'try to make faces regular' used

Out of curiosity, I then created this latest polyhedron’s convex hull. It turned out to have four faces which are equilateral triangles, a dozen other faces which are isosceles triangles, and a dozen faces which are irregular pentagons.

Convex hull Z

Next, I created the dual of this polyhedron, and it turns out to have faces which, while not identical, can be described the same way: four equilateral triangles, a dozen other isosceles triangles, and a dozen irregular pentagons — again. To find such similarity between a polyhedron and its dual is quite uncommon.

dual of Convex hull Z

I next attempted the “try to make faces regular” function, once more. Stella 4d, this time, was able to make the pentagons regular, and the triangles which were already regular stayed that way, as well. However, to accomplish this, the twelve other isosceles triangles not only changed shape a bit, but also shifted their orientation inward, making the overall result a non-convex polyhedron.


Having a non-convex polyhedron on my hands, the next step was obvious: create its convex hull. One more, I saw a polyhedron with faces which were four equilateral triangles, a dozen other isosceles triangles, and a dozen regular pentagons.

Convex hull

I then created the dual of this polyhedron, and, again, found myself looking at a polyhedron with, as faces, a dozen irregular pentagons, a dozen identical isosceles triangles, and four regular triangles. However, the arrangement of these faces was noticeably different than before.

latest Convex hull

Given this difference in face-arrangement, I decided, once more, to use the “try to make faces regular” function of Stella 4d. The results were, as before, unexpected.


Next, I created this latest polyhedron’s dual.


At no point in this particular “polyhedral journey,” as I call them, had I used stellation — so I decided to make that my next step. After stellating this last polyhedron 109 times, I found this:

109 stellationsTTMFRA dual

I then created the dual of this polyhedron. The result, unexpectedly, had a cuboctahedral appearance.

Faceted Dual

A single stellation of this latest polyhedron radically altered its appearance.

stellation Faceted Dual

My next step was to create the dual of this polyhedron.

dual Faceted Stellated Poly

This seemed like a good place to stop, and so I did.

A Cluster of Nine Octahedra, and Related Polyhedra

If one starts with a central octahedron, then augments each of its eight triangular faces with identical octahedra, this is the result.

9 Octahedra

It is then possible to augment each visible triangle of this cluster with yet more octahedra, which produces this result, in which some octahedra overlap each other.

Meta-9 Octahedra

After making this, I wanted to see its convex hull:  the smallest, tightest-fitting convex polyhedron which can contain a given non-convex polyhedron. (I use Stella 4d: Polyhedron Navigator to perform these manipulations of polyhedra, and this program makes this a fast and easy process. If you’d like to try this software, even as a free trial download, the website to visit is Here’s what this convex hull, which bears a resemblance to the rhombcuboctahedron, looks like.

Convex hull of meta-9-octahedron

Looking for previously-unseen, and interesting, polyhedra, I then starting stellating this convex hull. I did find something interesting — to me, anyway — after only two stellations.

2nd stellation of Convex hull of meta-9-octahedron

That concluded my latest polyhedral investigation, but I certainly don’t intend it to be my last.