A Compound of an Icosahedron and the First Stellation of the Rhombic Triacontahedron

Compound of an icosahedron and a stellation (find out which one) of the RTC

I made this compound using software called Stella 4d: Polyhedron Navigator. This program may be purchased (or a trial download tried for free) at this website.

Flying Kites into the Snub Dodecahedron, a Dozen at a Time, Using Tetrahedral Stellation

I’ve been shown, by the program’s creator, a function of Stella 4d which was previously unknown to me, and I’ve been having fun playing around with it. It works like this: you start with a polyhedron with, say, icosidodecahedral symmetry, set the program to view it as a figure with only tetrahedral symmetry (that’s the part which is new to me), and then stellate the polyhedron repeatedly. (Note: you can try a free trial download of this program here.) Several recent posts here have featured polyhedra created using this method. For this one, I started with the snub dodecahedron, one of two Archimedean solids which is chiral.

Snub Dodeca

Using typical stellation (as opposed to this new variety), stellating the snub dodecahedron once turns all of the yellow triangles in the figure above into kites, covering each of the red triangles in the process. With “tetrahedral stellation,” though, this can be done in stages, producing a greater variety of snub-dodecahedron variants which feature kites. As it turns out, the kites appear twelve at a time, in four sets of three, with positions corresponding to the vertices (or the faces) of a tetrahedron. Here’s the first one, featuring one dozen kites.

Snub Dodeca variant with kites

Having done this once (and also changing the colors, just for fun), I did it again, resulting in a snub-dodecahedron-variant featuring two dozen kites. At this level, the positions of the kite-triads correspond to those of the vertices of a cube.

Snub Dodeca variant with kites 1

You probably know what’s coming next: adding another dozen kites, for a total of 36, in twelve sets of three kites each. At this point, it is the remaining, non-stellated four-triangle panels, not the kite triads, which have positions corresponding to those of the vertices of a cube (or the faces of an octahedron, if you prefer).

Snub Dodeca variant with kites 2

Incoming next: another dozen kites, for a total of 48 kites, or 16 kite-triads. The four remaining non-stellated panels of four triangles each are now arranged tetrahedrally, just as the kite-triads were, when the first dozen kites were added.

Snub Dodeca variant with kites 3

With one more iteration of this process, no triangles remain, for all have been replaced by kites — sixty (five dozen) in all. This is also the first “normal” stellation of the snub dodecahedron, as mentioned near the beginning of this post.

Snub Dodeca variant with kites 4

From beginning to end, these polyhedra never lost their chirality, nor had it reversed.

There Are Many Faceted Versions of the Dodecahedron. This One Is the Dual of the Third Stellation of the Icosahedron.

Faceted Dodeca

The twelve purple faces of this faceted dodecahedron show up on Stella 4d‘s control interface as {10/4} star decagons, which would make them each have five pairs of two coincident vertices. I’m informally naming this special decagon-that-looks-like-a-pentagram (or “star pentagon,” if you prefer) the “antipentagram,” for reasons which I hope are clear.

Stella 4d, the program I use to make most of my polyhedral images, may be tried for free at http://www.software3d.com/Stella.php.

Selections from the Second Hundred Stellations of the Rhombicosidodecahedron

This survey began in the last post, with selections from the first hundred stellations of this Archimedean solid. In this survey of the second hundred stellations, the first one I find noteworthy enough for inclusion here is the 102nd stellation.

Rhombicosidodeca 102nd stellation

A similar figure is the 111th stellation:

Rhombicosidodeca 111th stellation

There followed a long “desert” when I did not find any that really “grabbed” me . . . and then I came to the 174th stellation.

Rhombicosidodeca 174th stellation

The fact that it is monocolored, the way I had Stella 4d set, told me immediately that this stellation (the one above) has only one face-type. There are twenty of these faces; they are each equilateral hexagons which “circumscibe,” in a way, the triangular faces of an icosahedron. For this reason, I suspect this is also one of the stellations of the icosahedron; I’m making a mental note to do exactly that.

I also make a second virtual model of the 174th stellation of the rhombicosidodecahedron, with the faces colored in such a way as to make the interpenetrating equilateral hexagons more obvious.

Stellated Rhombicosidodeca

After that interesting stellation, the next one to caught my attention is the 179th stellation.

Rhombicosidodeca 179th stellation

Next of note, the 182nd stellation is similar to the icosahedron/dodecahedron compound, but with the dodecaheron larger than it is in that compound, so that edges, one from each component polyhedron, do not intersect, but are instead skew. Another way to view it is that the dodecahedron is encasing the icoahedron, but with enough room left for portions of the icosahedron to protrude from the faces of the “dodecahedral cage.”

Rhombicosidodeca 182nd stellation

Next is the 183rd stellation.

Rhombicosidodeca 183rd stellation

Here is the 187th stellation, which is quite similar to the last one shown. The pulsating effect, first seen in the last post above, is an accident, and not discovered until after these images were already made, using Stella 4d, which may be tried here. Why didn’t I re-create the .gifs? Simple: I don’t feel like taking the ~10 minutes each to do so.

Rhombicosidodeca 187th stellation

The 190th stellation may also be viewed as a dodecahedron, augmented with variations of pentagonal pyramids on each face:

Rhombicosidodeca 190th stellation

Next, the 191st stellation:

Rhombicosidodeca 191st stellation

And, after that, the 192nd stellation.

Rhombicosidodeca 192nd stellation

The next stellation which grabbed by attention: the 198th.

Rhombicosidodeca 198th stellation

Finally, I’ll close this set of highlights from this part of the rhombicosidodecahedron’s stellation-series with that solid’s 199th stellation.

Rhombicosidodeca 199th stellation

Selections from the First Hundred Stellations of the Rhombicosidodecahedron

Since shortly after I learned of their existence, I have found the rhombicosidodecahedron to be the most attractive of the Archimedean solids. That’s a personal aesthetic statement, of course, not a mathematical one.

Rhombicosidodeca

This solid has a long stellation-series. With Stella 4d, the program I used to make these images, it’s easy to simply scroll through them. The stellation of this polyhedron follows these stellation-diagrams; I used Stella 4d to make them as well. You may research, try, or buy this program at this website. The first of these stellation-diagrams is for the planes of the twelve pentagonal faces.

Rhombicosidodeca -StelDiag for twelve face-planes

For the planes of the twenty triangular faces, this is the stellation-diagram:

Rhombicosidodeca -StelDiag for twenty face-planes-StelDiagFinally, there are the the planes of the thirty square faces.

Rhombicosidodeca -StelDiag for thirty face-planes-StelDiag

The following survey of the first hundred stellations is not intended to be exhaustive; I’m including all those I find worthy of inclusion on subjective aesthetic grounds. The first stellation shown here is actually the 25th stellation of the rhombicosidodecahedron:

Rhombicosidodeca 25th stellation

Next, the 30th stellation:

Rhombicosidodeca 30th stellation

The next one is the 33rd stellation.

Rhombicosidodeca 33rd stellation

And next, the 38th stellation.

Rhombicosidodeca 38th stellation

Here is the 46th stellation:

Rhombicosidodeca 46th stellation

And the 48th stellation:

Rhombicosidodeca 48th stellation

Next, the 58th stellation:

Rhombicosidodeca 58th stellation

And now, the 62nd stellation.

Rhombicosidodeca 62nd stellation

Next is the 85th stellation; it’s also a compound of an icosahedron (blue), and a yellow polyhedron I have not yet identified, except as the nth stellation of something. This I know: I have seen the yellow polyhedron before. If you happen to know what it is, the identify it in a comment.

Rhombicosidodeca 85th stellation might also be a compound

The next stellation shown is the next one in the series, the 86th. It demonstrates a phenomenon I have observed, but cannot explain, and that is the tendency, in sequences of stellations, to have a large number of similar stellations in a row, followed by a sudden, much more extreme change in appearance, from one stellation to the next, as seen here. It’s a phenomenon which I would like to better understand.

Rhombicosidodeca 86th stellation

To be continued, with selections from the next hundred stellations….

The Final Stellation of the Great Rhombicosidodecahedron, Together with Its Dual

In the last post, several selections from the stellation-series of the great rhombicosidodecahedron (which some people call the truncated icosidodecahedron) were shown. It’s a long stellation-series — hundreds, or perhaps thousands, or even millions, of stellations long (I didn’t take the time to count them) — but it isn’t infinitely long. Eventually, if repeatedly stellating this polyhedron, one comes to what is called the “final stellation,” which looks like this:

final valid stellation of the great rhombicosidodeca

Stellation-series “wrap around,” so if this is stellated one more time, the result is the (unstellated) great rhombicosidodecahedron. In other words, the series starts over.

The dual of the great rhombicosidodecahedron is called the disdyakis triacontahedron. The reciprocal function of stellation is faceting, so the dual of the figure above is a faceted disdyakis triacontahedron. Here is this dual:

Faceted Disdyakistriaconta

To complicate matters further, there is more than one set of rules for stellation. For an explanation of this, I refer you to this Wikipedia page. In this post, and the one before, I am using what are known as the “fully supported” rules.

Both these images were made using Stella 4d, software you can buy, or try for free, right here. When stellating polyhedra using this program, it can be set to use different rules for stellation. I usually leave it set for the fully supported stellation criteria, but other polyhedron enthusiasts have other preferences.

Selections from the Stellation-Series of the Great Rhombicosidodecahedron

The great rhombicosidodecahedron, also known as the truncated icosidodecahedron, has a long and complex stellation series. Here are some highlights from that series, chosen using aesthetic, rather than mathematical, criteria.

All these virtual models were made using Stella 4d, which you can try and/or buy here.

Nth stellation of the great rhombicosidodecaNt1h stellation of the great rhombicosidodecaN21h stellation of the great rhombicosidodecaN25hg1uyh stellation of the great rhombicosidodecaN25hhgdg1hghjjhfuyh stellation of the great rhombicosidodeca N25hhgdg1hgjhjjhfjhgujhfjhyh stellation of the great rhombicosidodeca N25hhgdg1hgjhjjhfjhgujhjhfjhyh stellation of the great rhombicosidodecaN25hhgdg1uyh stellation of the great rhombicosidodecaN251h stellation of the great rhombicosidodecaN251uyh stellation of the great rhombicosidodecaN25hhgdg1hgjhjjhfjhgujhjjhhfjhyh stellation of the great rhombicosidodecaN25hhgdg1hgjhjjhfjhgujhyh stellation of the great rhombicosidodecaN25hhgdg1hgjhjjhfujhyh stellation of the great rhombicosidodecaN25hhgdg1hgjhjjhfuyh stellation of the great rhombicosidodecaN25hhgdg1jfuyh stellation of the great rhombicosidodecaN25hhgdg1jjhfuyh stellation of the great rhombicosidodeca

Selections from the Stellation-Series of the Icosidodecahedron

The icosidodecahedron has a long and interesting stellation-series, and you can see the whole thing using Stella 4d, the program I used to make the rotating .gifs here. Rather than keep the scale the same in each frame, I set the program to make the polyhedron as large as possible, while still fitting in the image-box. This creates the illusion that the polyhedra below are “breathing.”

Glimpses of the invisible visible version 20th stellation of the icosidodecahedron

The polyhedron above is the 20th stellation of the icosidodecahedron — the one that appeared as the sole image in the last post here, but with completely different colors. The next one shown is the 31st stellation.

Glimpses of the invisible visible version 31st stellation of the icosidodecahedron

Glimpses of the invisible visible version 55th stellation of the icosidodecahedron

The 55th stellation is immediately above, while the next one is the 69th.

Glimpses of the invisible visible version 69th stellation of the icosidodecahedron

Glimpses of the invisible visible version 84th stellation of the icosidodecahedron

The 84th stellation is immediately above, while the next one is the 89th.

Glimpses of the invisible visible version 89th stellation of the icosidodecahedron

Glimpses of the invisible visible version 106th stellation of the icosidodecahedron

The 106th stellation is immediately above, while the next one is the the 110th.

Glimpses of the invisible visible version 110th stellation of the icosidodecahedron

Glimpses of the invisible visible version 135th stellation of the icosidodecahedron

The 135th stellation is immediately above, while the next one, which is chiral, is the 157th.

Glimpses of the invisible visible version 157th stellation of the icosidodecahedron

Glimpses of the Invisible

Glimpses of the invisible

Created using Stella 4d, available here, by multiple stellations of a black icosidodecahedron, rendered as a rotating figure, against a black background.

Stellating the Great Dodecahedron, by Twentieths, to Beethoven’s Ninth

In this video, the great dodecahedron is stellated, by twentieths, into the great stellated dodecahedron, while a selection from Ludwig van Beethoven’s Ninth Symphony plays. The images for this video were created using Stella 4d, a program you can try for yourself (free trial download available), right here: http://www.software3d.com/Stella.php.