# The Dodecagonal Duoprism

There are objects in hyperspace known as duoprisms, which have prismatic cells. This one’s cells are 24 dodecagonal prisms. It was made using Stella 4d, available here.

## The Icositetrachoron, or 24-Cell: An Oddball In Hyperspace

### Image

In three dimensions, there are five regular, convex polyhedra. Similarly, in five dimensions, there are five regular, convex polytopes. There are also five of them in six, seven, eight dimensions . . . and so on, for as long as care to venture into higher-dimensional realms. However, in hyperspace — that is, four dimensions — there are, strangely, six.

The five Platonic solids have analogs among these six convex polychora, and then there’s one left over — the oddball among the regular, convex polychora. It’s the figure you see above, rotating in hyperspace: the 24-cell, also known as the icositetrachoron. Its twenty-four cells are octahedra.

Like the simplest regular convex polychoron, the 5-cell (analogous to the tetrahedron), the 24-cell is self-dual. No matter how many dimensions you are dealing with, it is always possible to make a compound of any polytope and its dual. Here, then, is the compound of two 24-cells (which may be enlarged by clicking on it):

Both of these moving pictures were generated using software called Stella 4d:  Polyhedron Navigator. You can buy it, or try a free trial version, right here:  www.software3d.com/Stella.php.

## The Hyperspace Analog of the Dodecahedron/Icosahedron Compound

### Image

The dodecahedron and the icosahedron are dual to each other, and can be combined to make this well-known compound.

In hyperspace, the analog to the dodecahedron is the hyperdodecahedron, also known as the 120-cell, as well as the hecatonicosachoron. Its dual is the 600-cell, or hexacosichoron, made of 600 tetrahedral cells. The image at the top is the compound of these two polychora, rotating in hyperspace.

These images were made using Stella 4d, available at http://www.software3d.com/Stella.php.