The 9-81-90 Triangle

In a previous post (right here), I explained the 18-72-90 triangle, derived from the regular pentagon. It looks like this:

18-72-90 triangle

I’m now going to attempt derivation of another “extra-special right triangle” by applying half-angle trigonometric identities to the 18º angle. After looking over the options, I’m choosing cot(θ/2) = csc(θ) + cot(θ). By this identity, cot(9°) = csc(18°) + cot(18°) = 1 + sqrt(5) + sqrt[2sqrt(5) + 5].

Since cotangent equals adjacent over opposite, this means that, in a 9-81-90 triangle, the side adjacent to the 9° angle has a length of 1 + sqrt(5) + sqrt[2sqrt(5) + 5], while the side opposite the 9° angle has a length of 1. All that remains, now, is to use the Pythagorean Theorem to find the length of the hypotenuse.

By the Pythagorean Theorem, and calling the hypotenuse h, we know that h² = (1)² + {[1 + sqrt(5)] + sqrt[2sqrt(5) + 5]}² = 1 + {2[(1 + √5)/2] + sqrt[(2√5) + 5]}² = 1 + {2φ + sqrt[(2√5) + 5]}², where φ = the Golden Ratio, or (1 + √5)/2, since I want to use the property of this number, later, that φ² = φ + 1.

Solving for h, h = sqrt(1 + {2φ + sqrt[(2√5) + 5]}²) = sqrt{1 + 4φ² + (2)2φsqrt[(2√5) + 5] + (2√5) + 5} = sqrt{6 + 4(φ + 1) + 4φsqrt[(2√5) + 5] + (2√5)} = sqrt{6 + 4φ + 4 + 4φsqrt[(2√5) + 5] + (2√5)} = sqrt{10 + 4[(1 + √5)/2] + 4φsqrt[(2√5) + 5] + (2√5)} = sqrt{10 + 2 + (2√5) + 4φsqrt[(2√5) + 5] + (2√5)} = sqrt{12 + (4√5) + 4[1 + √5)/2]sqrt[(2√5) + 5]} = sqrt{12 + (4√5) + (2 + 2√5)sqrt[(2√5) + 5]}, the length of the hypotenuse. Here, then, is the 9-81-90 triangle:

9-81-90 triangle

 

Reaugmenting the Dodecahedron

Suppose you take a central dodecahedron, and then augment each of its faces with a dodecahedron. That would be an augmented dodecahedron. If you augment this figure with another layer of dodecahedra, then you have the reaugmented dodecahedron:

The Reaugmented Dodeca

After another level of such augmentation, you get this — the metareaugmented dodecahedron:

The MetaReaugmented Dodeca

Both these images were created using Stella 4d, which you can try here.

An Unsolved Problem Involving the Icosahedron and the Dodecahedron, and Their Circumscribed Spheres

This is apparently a problem, posed by Gregory Galperin, which went unsolved at the Bay Area Math Olympiad in 2005. I haven’t solved it yet, but I’m going to try, as I work on this blog-post. My 2010 source is a paper about Zome which may be read, as a .pdf, at bact.mathcircles.org/files/Summer2010/zomes-6-2010.pdf. The problem involves a dodecahedron and an icosahedron, each inscribed inside the same sphere of radius r, and asks which has the greater volume. At the time the authors wrote this paper, they knew of no solution, and I know of none now, but I do like a challenge.

My idea for solving this begins with Zome (info on Zome:  see http://www.zometool.com, as well as other sites you can find by googling “Zome”). In the Zome geometry system, using B1 struts for the edges of both a dodecahedron and an icosahedron, R1 struts are the radii of the circumscribed sphere for the icosahedron,  and Y2 struts are the radii for the circumscribed sphere of the dodecahedron. Since volume formula for polyhedra are generally given in term of edge-length, I need to find B1 in terms of R1 for the icosahedron, and find B1 in terms of Y2 for the dodecahedron.

icosa

Icosahedron:  find B1, in terms of R1.

There exists a right triangle which can be built in Zome which has a hypotenuse equal to 2R1, and legs epqual to B1 and B2. B2 = φB1, so, by the Pythagorean Theorem, (2R1)^2 = (B1)^ + φ²(B1)², which simplifies to 4(R1)^2 = (1 + φ²)(B1)^2, which can then be solved for B1 as B1 = sqrt[4(R1)^2/(1 + φ²)]. B1 here is the icosahedron’s edge-length, while R1 is the radius of its circumscribed sphere.

dodecahedron

Dodecahedron:  find B1, in terms of Y2.

In the Zome system, Y2 = φY1, and Y1 = [sqrt(3)/2]B1. Rearrangement of the first of these equations yields Y1 = Y2/φ, and substitution then yields [sqrt(3)/2]B1 = Y2/φ, which then can be rearranged to yield B1 = 2Y2/[φsqrt(3)]. B1 here is the dodecahedron’s edge-length, while Y2 is the radius of its circumscribed sphere.

Next, find the volume of the icosahedron inscribed inside a sphere, in terms of that sphere’s radius.

According to http://mathworld.wolfram.com/Icosahedron.html, the volume of an icosahedron is given by V = (5/12)[3 + sqrt(5)]a³, where a is the edge length, or B1 in the first indented section, between the two images, above.  Then, by substitution, V = (5/12)[3 + sqrt(5)]{sqrt[4(R1)^2/(1 + φ²)]}³, which then becomes (with “r” being the radius of the circumscribed sphere) V = (5/12)[3 + sqrt(5)][2r/sqrt(1 + φ²)]³ = (40/12)[3 + sqrt(5)][1/sqrt(1 + φ²)]³r³ = (10/3)[3 + sqrt(5)][1/sqrt(1 + φ²)]³r³. Then, using the identity φ² = φ + 1, this can be further simplified to V = (10/3)[3 + sqrt(5)][1/sqrt(2 + φ)]³r³.

Next, find the volume of the dodecahedron inscribed inside the same sphere, in terms of that sphere’s radius, r.

According to https://en.wikipedia.org/wiki/Dodecahedron, the volume of an icosahedron is given by V = (1/4)[15 + 7sqrt(5)]a³, where a is the edge length, or B1 in the second indented section, below the second image, above.  Then, by substitution, V = (1/4)[15 + 7sqrt(5)]{2Y2/[φsqrt(3)]}³, which then becomes (with “r” being the radius of the circumscribed sphere) V = (8/4)[15 + 7sqrt(5)]{1/[φsqrt(3)]}³r³ = 2[15 + 7sqrt(5)]{1/[3sqrt(3)]}(1/φ³)r³ = (2/3)[15 + 7sqrt(5)][sqrt(3)/3](1/φ³)r³  = [2sqrt(3)/9][15 + 7sqrt(5)](1/φ³)r³.

So, with the “r” in each case being the same, the icosahedron is larger than the dodecahedron iff (10/3)[3 + sqrt(5)][1/sqrt(2 + φ)]³ > [2sqrt(3)/9][15 + 7sqrt(5)](1/φ³), which simplifies to (5)[3 + sqrt(5)][1/sqrt(2 + φ)]³ > [2sqrt(3)/3][15 + 7sqrt(5)](1/φ³), which simplifies further to {5/[sqrt(2 + φ)]³}[3 + sqrt(5)] > [2sqrt(3)/3φ³][15 + 7sqrt(5)], which is, as a decimal approximation, is (0.726542528)(5.2360679774998) > (3.464101615/12.708203932)(30.6524758), or 3.804226 > 8.355492, which is false, meaning that the dodecahedron is larger, not the icosahedron.

Now for the bad part:  I think I’m wrong, but I don’t know where the error lies. I’m also tired. If any of you see the mistake, please point it out in a comment, and I’ll try to fix this after I’ve rested.

Update:  if the websites http://rechneronline.de/pi/icosahedron.php and http://rechneronline.de/pi/dodecahedron.php work correctly, then the dodecahedron is larger. Evidence:

volume calculators

This does not, however, mean that I did the problem correctly. I merely stumbled upon the correct answer. How do I know this? Simple:  the ratio I obtained was too far off. Therefore, I would still welcome help clearing up the mystery of where my error(s) is/are, in the calculations shown above.

A Cluster-Polyhedron Formed By 15 Truncated Octahedra, Plus Variations

15 Trunc Octa

To form the cluster-polyhedron above, I started with one truncated octahedron in the center, and then augmented each of its fourteen faces with another truncated octahedron. Since the truncated octahedron is a space-filling polyhedron, this cluster-polyhedron has no gaps, nor overlaps. The same cluster-polyhedron is below, but colored differently:  each set of parallel faces gets a color of its own.

15 Trunc Octa color by face unless parallel

This is the cluster-polyhedron’s sixth stellation, using the same coloring-scheme as in the last image:

15 Trunc Octa color by face unless parallel 6th stellation

Here’s the sixth stellation again, but with the coloring scheme that Stella 4d:  Polyhedron Navigator (the program I use to make these images) calls “color by face type.” If you’d like to try Stella for yourself, you can do so here.

15 Trunc Octa color by face type 6th stellation

Also colored by face-type, here are the 12th, 19th, and 86th stellations.

15 Trunc Octa color by face type 12th stellation

15 Trunc Octa color by face type 19th stellation

15 Trunc Octa color by face type 86th stellation

Leaving stellations now, and returning to the original cluster-polyhedron, here is its dual.

15 Trunc Octa dual

This image reveals little about this dual, however, for much of its structure is internal. So that this internal structure may be seen, here is the same polyhedron, but with only its edges visible.

15 Trunc Octa dual wirre-frame

Finally, here is an edge-rendering of the original cluster-polyhedron, but with vertices shown as well — just not the faces.

15 Trunc Octa wirre-frame

The “Destabilized” Element, Bismuth, Plus Others Which May Join It Soon

There is a chemical element, bismuth, which many people — even chemists — think has at least one stable isotope. However, the truth, discovered in 2003 (but still not well-known), is that it has no stable isotopes, but does have one with an extremely long half-life — so long that it, and other isotopes with similarly-long half-lives, are often deemed “effectively stable.” Bismuth is shown in green on the table, and its “effectively stable” isotope, bismuth-209,  has a half-life of at least 1.9 x 1019 years. For comparison, it has “only” been ~1.38 x 1010 years since the Big Bang. Bismuth-209’s half-life is, therefore, over a billion times longer than the total amount of time which has existed, so far.

PeriodicTable

In addition, the yellow boxes indicate elements which have only radioactive and “observationally stable” isotopes. “Observationally stable” means that radioactivity (in some cases, even the spontaneous-fission variety), with an extremely long half-life, is predicted, or at least thought to be possible, but no actual decay has yet been observed — so the yellow elements’ perhaps-stable, perhaps-not isotopes are “on watch.” The red boxes, by contrast, are for elements which have been long-known to have no stable isotopes.

None of this takes into consideration the unresolved issue of hypothesized long-term proton decay. If protons turn out to be unstable, all atoms likely are as well, unless simply having them exist in atoms somehow stabilizes them, as is the case for neutrons, which decay in isolation, but do not in stable nuclei. This is an area of uncertainty — another way of saying that this is something which needs further study.

Sam Harris on Men, Women, Violence, and Rape

sam-harris rape

The Eleven Oddball Symbols on the Periodic Table of the Elements

periodic table oddballs

Most symbols for elements on the periodic table are easy to learn, such as those for carbon, oxygen, and nitrogen:  C, O, and N. There are eleven “oddballs,” though, because their symbols originated in other languages (Latin, mostly), and do not match their English names. Here’s a list of them, by atomic number, with an explanation for each.

11. Na stands for sodium because this element used to be called natrium.

19. K stands for potassium, for this element’s name used to be kalium.

26. Fe stands for iron because this element was formerly named ferrum.

29. Cu stands for copper because it used to be called cuprum.

47. Ag’s (silver’s) old name was argentum.

50. Sn’s (tin’s) name used to be stannum.

51. Antimony’s symbol, Sb, came from its former name, stibium.

74. Tungsten, with the symbol W, was once called wolfram. In some parts of the world, it still goes by that name, in fact.

79. Gold (Au) was called aurum in past centuries.

80. Mercury’s (Hg’s) old name is impossible (for me, anyway) to say five times, quickly:  hydrargyrum.

82. Lead (Pb) was once called plumbum because plumbers used it to weight the lower end of plumb-lines.

I think learning things is easier, with longer retention, if one knows the reasons behind the facts, rather than simply attempting rote memorization.

The Ill-Fated Quest for “Genesis”

NT

In the “too funny to be made up” category, I recently had someone ask me for help, because he could not find “Genesis” in the paperback New Testament he was reading. I referred him to the complete Bible on the bookshelf, told him to look in the front, and somehow didn’t laugh until he was out of the room, but this took extreme effort.

Some Variants of Kepler’s Stella Octangula

The Stella Octangula is also known as the compound of two tetrahedra, which works well because the tetrahedron is self-dual. All of these are also two-part compounds, with varying amounts of similarity to the Stella Octangula. The first one is also the 26th stellation of the triakis octahedron, one of the Catalan solids.

compound and 26th stellation of triakis octahedron

All of these were made using Stella 4d, which may be tried or purchased at http://www.software3d.com/Stella.php.

odd compound

SO var d

SO var sdd

SO variant

A Hollow Octahedron Made of Rhombic Dodecahedra, with Variations

hOLLOW oCTAHEDRON mADE OF Rhombic Dodeca

The original polyhedral cluster I built using Stella 4d (available here) is above. Below is its 29th stellation.

hOLLOW oCTAHEDRON mADE OF Rhombic Dodeca 29th stellation

And the 30th stellation, as well:

hOLLOW oCTAHEDRON mADE OF Rhombic Dodeca 30th stellation

This is the original polyhedral cluster’s dual:

hOLLOW oCTAHEDRON mADE OF Rhombic Dodeca dual

The next image is a variant of the original polyhedral cluster, rendered with only its edges, but not faces or vertices, visible. I wish I could remember exactly how I made this variant, but I simply cannot recall the exact methods I used.

hollow octahedron variant

This is the dual of the polyhedron shown immediately above, rendered in the same manner:

hollow object made of cubes -- dual of hollow octahedron variantThis is a compound of the two dual polyhedra right before this sentence.

hollow octahedron variant compound of it and dual