# Tag Archives: learning

# On Leaving the Brick-and-Mortar Classroom

I’ve been a high school teacher for the last 25 years. I’m also leaving the classroom — but I’m not leaving teaching. Next year will be my 26th year teaching, and I’ve been told that I’ll be teaching on-line, from an office.

This is how we all taught during the fourth quarter of the last school year, except we did it from home, since brick-and-mortar schools shut down, all over the world, due to the COVID-19 pandemic. We used screensharing in Google Hangouts (shown above), Google Classroom, e-mail, and lots of other things to finish the school year . . . and we did finish it, successfully. This year, teachers won’t be at home (unless things change, due to the coronavirus), but many of our students *will* be staying home.

After I’d finished everything up for the 2019-2020 year, I went to school to turn in my keys. At that point, it was obvious that we were likely to have some sort of dual-track system for 2020-2021, with some students receiving instruction at school, and others at home, remotely, using their district-issued Chromebooks. I told my principal that if we did end up doing such a system, that I wanted to be on the “home team.” I don’t want to have to go to school and risk COVID-19 infection, which could then be spread to my family, some of whom are in high-risk groups for this disease. I’ve now received confirmation that I will be a remote-learning instructor next year, presumably working with students from all over the district.

I’m going to miss my old school, both the Sylvan Hills High North Campus and the Sylvan Hills High Main Campus. Sylvan Hills taught me a lot about being a better teacher. As a result, I’m leaving with an improved ability to help students, compared to six years ago, when coming to Sylvan Hills from other schools. My principals at these two campuses deserve a lot of the credit for this. I’ve worked with many administrators over the years, and these two are the ones who have helped me the most in my efforts to become a better teacher.

The coming year will present many challenges. To teach effectively, you have to get to know your students. We’ll be doing instruction and discussions with computers, webcams, microphones, and speakers, so I’m going to have to make a lot of adjustments to get to know my students as real people, while teaching remotely for a full year. The end of the last school year gave me a lot of experience I can build on.

This next year should be interesting, and I am looking forward to it.

# A Mathematical Model for Human Intelligence

People have been trying to figure out what intelligence is, and how it differs from person to person, for centuries. Much has been written on the subject, and some of this work has helped people. Unfortunately, much harm has been done as well. Consider, for example, the harm that has been done by those who have had such work tainted by racism, sexism, or some other form of “us and them” thinking. This model is an attempt to eliminate such extraneous factors, and focus on the essence of intelligence. It is necessary to start, therefore, with a clean slate (to the extent possible), and then try to figure out how intelligence works, which must begin with an analysis of what it is.

If two people have the same age — five years old, say — and a battery of tests have been thrown at them to see how much they know (the amount of knowledge at that age), on a wide variety of subjects, person A (represented by the blue curve) may be found to know more, at that age, than person B (represented by the red curve). At that age, one could argue that person A is smarter than person B. Young ages are found on the left side of the graph above, and the two people get older, over their lifespans, as the curves move toward the right side of the graph.

What causes person A to know more than person B, at that age? There can be numerous factors in play, but few will be determined by any conscious choices these two people made over their first five years of life. Person B, for example, might have been affected by toxic substances* in utero*, while person A had no such disadvantage. On the other hand, person A might simply have been encouraged by his or her parents to learn things, while person B suffered from parental neglect. At age five, schools are not yet likely to have had as much of an impact as other factors.

An important part of this model is the recognition that people change over time. Our circumstances change. Illnesses may come and go. Families move. Wars happen. Suppose that, during the next year, person B is lucky enough to get to enroll in a high-quality school, some distance from the area where these two people live. Person B, simply because he or she is human, does possess curiosity, and curiosity is the key to this model. Despite person B‘s slow start with learning, being in an environment where learning is encouraged works. This person begins to acquire knowledge at a faster rate. On the graph, this is represented by the red curve’s slope increasing. This person is now gaining knowledge at a much faster rate than before.

In the meantime, what is happening with person A? There could be many reasons why the slope of the blue curve decreases, and this decrease simply indicates that knowledge, for this person, is now being gained at a slower rate than before. It is tempting to leap to the assumption that person A is now going to a “bad” school, with teachers who, at best, encourage rote memorization, rather than actual understanding of anything. Could this explain the change in slope? Yes, it *could*, but so could many other factors. It is undeniable that teachers have an influence on learning, but teacher quality (however it is determined, which is no easy task) is only one factor among many. Encouraging the “blame the teacher” game is not the goal of this model; there are already plenty of others doing *that*.

Perhaps person A became ill, suffered a high fever, and sustained brain damage as a result. Perhaps he or she is suddenly orphaned, therefore losing a previous, positive influence. There are many other possible factors which could explain this child’s sudden decrease of slope of the blue “learning curve” shown above; our species has shown a talent for inventing horrible things to do to, well, our species. Among the worst of the nightmare scenarios is that, while person B is learning things, at a distant school, the area where person A still lives is plunged into civil war, and/or a genocide-attempt is launched against the ethnic group which person A belongs to, as the result of nothing more than an accident of birth, and the bigotry of others. Later in life, on the graph above, the two curves intersect; beyond that point, person B knows more than person A, despite person B‘s slow start. To give credit, or blame, to either of these people for this reversal would clearly be, at best, a severely incomplete approach.

At some point, of course, some people take the initiative to begin learning things on their own, becoming autodidacts, with high-slope learning curves. In other words, some people assume personal responsibility for their own learning. Most people do not. Few would be willing to pass such judgment on a child who is five or six years old, but what about a college student? What about a high school senior? What about children who have just turned thirteen years old? For that matter, what about someone my age, which is, as of this writing, 48? It seems that, the older a person is, the more likely we are to apply this “personal responsibility for learning” idea. Especially with adults, the human tendency to apply this idea to individuals may have beneficial results. That does not, however, guarantee that this idea is actually correct.

I must stop analyzing the graph above for now, because the best person for me to examine, at this point, in detail, is not on the graph above. He is, however the person I know better than anyone else: myself. I’ve been me now for over 48 years, and have been “doing math problems for fun” (as my blog’s header-cartoon puts it) for as long as I can remember. This is unusual, but, if I’m honest, I have to admit that there are inescapable and severe limits on the degree to which I can make a valid claim that I deserve credit for any of this. I did not select my parents, nor did I ask either of them to give me stacks of books about mathematics, as well as the mathematical sciences. They simply noticed that, when still young, I was curious about certain things, and provided me with resources I could use to start learning, early, at a rapid rate . . . and then I made this a habit, for, to me, learning is fun, if (and only if) the learning is in a field I find interesting. I had absolutely nothing to do with creating this situation. My parents had the money to buy those math books; not all children are as fortunate in this respect. Later still, I had the opportunity to attend an excellent high school, with an award-winning teacher of both chemistry and physics. To put it bluntly, I lucked out. As Sam Harris, the neuroscientist, has written, “You cannot make your own luck.”

At no point in my life have I managed to learn how to create my own luck, although I have certainly tried, so I have now reached the point where I must admit that, in this respect, Sam Harris is correct. For example, I am in college, again, working on a second master’s degree, but this would not be the case without many key factors simply falling into place. I didn’t create the Internet, and my coursework is being done on-line. I did not choose to be born in a nation with federal student loan programs, and such student loans are paying my tuition. I did not create the university I am attending, nor did I place professors there whose knowledge exceeds my own, regarding many things, thus creating a situation where I can learn from them. I did not choose to have Asperger’s Syndrome, especially not in a form which has given me many advantages, given that my “special interests” lie in mathematics and the mathematical sciences, which are the primary subjects I have taught, throughout my career as a high school teacher. The fact that I wish to be honest compels me to admit that I cannot take credit for any of this — not even the fact that I wish to be honest. I simply observed that lies create bad situations, especially when they are discovered, and so I began to try to avoid the negative consequences of lying, by breaking myself of that unhelpful habit.

The best we can do, in my opinion, is try to figure out what is really going on in various situations, and discern which factors help people learn at a faster rate, then try to increase the number of people influenced by these helpful factors, rather than harmful ones. To return to the graph above, we will improve the quality of life, for everyone, if we can figure out ways to increase the slope of people’s learning-curves. That slope could be called the learning coefficient, and it is simply the degree to which a person’s knowledge is changing over time, at any given point along that person’s learning-curve. This learning coefficient can change for anyone, at any age, for numerous reasons, a few of which were already described above. Learning coefficients therefore vary from person to person, and also within each person, at different times in an individual’s lifetime. This frequently-heard term “lifelong learning” translates, on such graphs, to keeping learning coefficients high throughout our lives. The blue and red curves on the graph above change slope only early in life, but such changes can, of course, occur at other ages, as well.

It is helpful to understand what factors can affect learning coefficients. Such factors include people’s families, health, schools and teachers, curiosity, opportunities (or lack thereof), wealth and income, government laws and policies, war and/or peace, and, of course, luck, often in the form of accidents of birth. Genetic factors, also, will be placed on this list by many people. I am not comfortable with such DNA-based arguments, and am not including them on this list, for that reason, but I am also willing to admit that this may be an error on my part. This is, of course, a partial list; anyone reading this is welcome to suggest other possible factors, as comments on this post.

# On Teaching Students with Asperger’s Syndrome

Teaching students with Asperger’s Syndrome is a challenge. As a teacher who also has Asperger’s, I have some suggestions for how to do this, and wish to share them.

- Keep the administrators at your school informed about what you are doing.
- Know the laws regarding these matters, and follow them carefully. Laws regarding confidentiality are particularly important.
- Identify the special interest(s) of the student (these special interests are universally present with Asperger’s; they also appear, sometimes, with students on other parts of the autism spectrum). Do not expect this/these special interest(s) to match that of anyone else, however — people with Asperger’s are extremely different from each other, just as all human beings are. As is the case with my own special interests in mathematics and the “mathy” sciences, it’s pretty much impossible to get students with Asperger’s to abandon their special interest — and I know this because I, quite literally,
*cannot*do much of anything without first translating it, internally, into mathematical terms — due to my own case of Asperger’s. Identifying the special interest of a student with Asperger’s requires exactly one thing: paying attention. The students themselves will make it easy to identify their special interest; it’s the activity that they*want*to do . . . pretty much*all*the time. - Find out, by carefully reading it, if the student’s official Section 504 document, or Special Education IEP, permits item #5 on this list to be used. If it doesn’t, you may need to suggest a revision to the appropriate document. (Note: these are the terms used in the USA; they will be different in other countries.)
- Of things done in class which will be graded, if the relevant document permits it, alter them in such a way as to allow the student to use his or her special interest to express understanding of the concepts and ideas, in your class, which need to be taught and learned. This is, of course, the most difficult step, but I cannot overemphasize its importance.
- Use parental contact to make certain the parent(s) know about, and agree with, the proposed accommodations/modifications. (504 students get accommodations, while special education students receive modifications. Following both 504 plans, and Special Education IEPs, is
*not*optional for teachers — it is an*absolute legal requirement*, by federal law, and the penalties for failure to do so are severe. It is also, of course, the ethical thing to do.) - Do not make the mistake of punishing any student for behavior related to a documented condition of any kind, including Asperger’s Syndrome.

# How I Hit My Personal Mathematical Wall: Integral Calculus

To the best of my recollection, this is the first time I have written publicly on the subject of calculus. The fundamental reason for this, explained in detail below, is something I rarely experience: embarrassment.

Unless this is the first time you’ve read my blog, you already know I like mathematics. If you’re a regular follower, you know that I take this to certain extremes. My current conjecture is that my original motivation to learn how to speak, read, and write, before beginning formal schooling, was that I had a toddler-headful of mathematical ideas, no way to express them (yet), and learned to use English in order to change that. Once I could understand what others were saying, read what others had written, write things down, and speak in sentences, I noticed quickly that interaction with other people made it possible to bounce mathematical ideas around, using language — which helped me to develop and expand those mathematical ideas more quickly. Once I started talking about math, as anyone who knows me well can verify, I never learned how to shut up on the subject for longer than ten waking hours at a time.

A huge part of the appeal of mathematics was that I didn’t have to memorize anything to do it, or learn it. To me, it was simply one obvious concept at a time, with one exposure needed to “get it,” and remember it as an understood concept, rather than a memorized fact. (Those math teachers of mine who required lots of practice, over stuff I already knew, did not find me easy to deal with, for I hated being forced to do that unnecessary-for-me chore, and wasn’t shy about voicing that dislike to anyone and everyone within hearing range, regardless of the situation or setting. The worst of this, K-12, was long division, especially the third year in a row that efforts were made to “teach” me this procedure I had already learned, on one specific day, outside school, years earlier.) It might seem like I have memorized certain things, such as, say, the quadratic formula, but I never actually *tried* to — this formula just “stuck” in my mind, from doing lots of physics problems, of different types, which required it. Similarly, I learned the molar masses of many commonly-encountered elements by repeatedly using them to show students how to solve problems in chemistry, but at no time did I make a deliberate attempt to memorize any of them. If I don’t try to memorize something, but it ends up in memory anyway, that doesn’t count towards my extremely-low “I hate memorizing things” threshhold.

When I first studied calculus, this changed. Through repeated, forced exposure in A.P. Calculus class my senior year of high school, with a teacher I didn’t care for, I still learned a few things that stuck: how to find the derivative of a polynomial, the fact that a derivative gives you the slope a function, and the fact that its inverse function, integration, yields the area under the curve of a function. After I entered college, I then landed in Calculus I my freshman year. Unbeknownst to me, I was approaching a mental wall.

My college Cal I class met early in the morning, covered material I had already learned in high school, and was taught by an incomprehensible, but brilliant, Russian who was still learning English. Foreign languages were uninteresting to me then (due to the large amount of memorization required to learn them), and I very quickly devised a coping strategy for this. It involved attending class as infrequently as possible, but still earning the points needed for an “A,” by asking classmates when quizzes or tests had been announced, and only waking up for class on those mornings, to go collect the points needed for the grade I wanted.

This was in 1985-86, before attendance policies became common for college classes, and so this worked: I got my “A” for Cal I. “That was easy,” I thought, when I got my final grade, “so, on to the next class!”

I did a lot of stupid things my freshman year of college, as is typical for college freshmen around the world, ever since the invention of college. One of these stupid things was attempting to use the same approach to Calculus II, from another professor. About 60% of the way through that course, I found myself in a situation I was not used to: I realized I was failing the class.

Not wanting an “F,” I started to attend class, realizing I needed to do this in order to pass Cal II, which focuses on integral calculus. A test was coming up. In class, the professor handed out a sheet of integration formulas, and told us to memorize them.

*Memorize* them.

I read the sheet of integration formulas, hoping to find patterns that would let me learn them my way, rather than using brute-force memorization-by-drill. Since I had been skipping class, I saw no such patterns. All of a sudden, I realized I was in a new situation, for me: mathematics suddenly was not fun anymore. My “figure it out on the fly” method, which is based on understanding, rather than memorization, had stopped working.

A few weeks and a failed test later, I began to doubt I would pass, and tried to drop the class. This is how I learned of the existence of drop dates for college classes, but I learned it too late: I was already past the drop date.

I did *not* want an F, especially in a math class. Out of other options, I started drilling and memorizing, hated every minute of it, but did manage to bring my grade up — to the only “D” I have on any college transcript. Disgusted by this experience, I ended up dropping out of college, dropped back in later, dropped out again, re-dropped back in at a different university, and ended up changing my major to history, before finally completing my B.A. in “only” seven years. I didn’t take another math class until after attempting to do student teaching, post-graduation . . . in social studies, with my primary way of explaining anything being to reduce it to an equation, since equations make sense. This did *not* go well, so, while working on an M.A. (also in history) at a third college, I took lots of science and math classes, on the side, to add additional teaching-certification areas in subjects where using equations to explain things is far more appropriate, and effective. This required taking more classes full of stuff I already knew, such as College Algebra and Trigonometry, so I took them by correspondence (to avoid having to endure lectures over things I already knew), back in the days when this required the use of lots of postage stamps — but no memorization. To this day, I would rather pay for a hundred postage stamps than deliberately memorize something.

In case you’re wondering how a teacher can function like this, I will explain. Take, for example, the issue of knowing students’ names. Is this important? Yes! For teaching high school students, learning the names of every student is absolutely essential, as was quite evident from student teaching. However, I do this important task by learning something *else* about each student — how they prefer to learn, for example, or something they intensely like, or dislike — at which point memorization of the student’s name becomes automatic for me. It’s only conscious, deliberate memorization-by-drill that bothers me, not “auto-memorization,” also known as actually understanding something, or, in the case of any student, learning something about someone.

I don’t know exactly why my to-this-point “wall” in mathematics appeared before me at this point, but at least I know I am in good company. Archimedes knew nothing of integral calculus, nor did his contemporaries, for it took roughly two millennia longer before Isaac Newton and Gottfried Leibniz discovered this branch of mathematics, independently, at roughly the same time.

However, now, in my 21st year as a teacher, I have now hit another wall, and it’s in physics, another subject I find fascinating. Until I learn more calculus, I now realize I can’t learn much more physics . . . and I *want* to learn more physics, for the simple reason that it is the only way to understand the way the universe works, at a fundamental level — and, like all people, I am trapped in the universe for my entire life, so, naturally I want to understand it, to the extent that I can. (A mystery to me: why isn’t this true for everyone else? We’re all trapped here!) Therefore, I now have a new motivation to learn calculus. However, I want to do this with as much real understanding as possible, and as little deliberate memorization as possible, and that will require a different approach than my failed pre-20th-birthday attempt to learn calculus.

I think I need exactly one thing, to help me over this decades-old wall: a book I can read to help me teach myself calculus, but not a typical textbook. The typical mathematics textbook takes a drill-and-practice approach, and what I need is a book that, instead, will show me exactly how various calculus skills apply to physics, or, failing that, to geometry, my favorite branch of mathematics, by far. If any reader of this post knows of such a book, please leave its title and author in a comment. I’ll then buy the book, and take it from there.

One thing I do not know is the extent to which all of this is related to Asperger’s Syndrome, for I was in my 40s when I discovered I am an “Aspie,” and it is a subject I am still studying, along with the rest of the autism spectrum. One thing Aspies have in common is a strong tendency to develop what we, and those who study us, call “special interests,” such as my obsession with polyhedra, evident all over this blog. What Aspies do not share is the identity of these special interests. Poll a hundred random Aspies, and only a minority will have a strong interest in mathematics — the others have special interests in completely different fields. One thing we have in common, though, is that the way we think (and learn) is extremely different from the ways non-Aspies think and learn. The world’s Aspie-population is currently growing at a phenomenal rate, for reasons which have, so far, eluded explanation. The fact that this is a recent development explains why it remains, so far, an unsolved mystery. One of things which *is* known, however, is the fact that our status as a rapidly-growing population is making it more important, by the day, for these differences to be studied, and better understood, as quickly as the speed of research will allow, in at least two fields: medicine, and education.

Only one thing has fundamentally changed about me, regarding calculus, in nearly 30 years: I now *want* to get to the other side of this wall, which I now realize I created for myself, when I was much younger. I am also optimistic I will succeed, for nothing helps anyone learn anything more than actually *wanting* to learn it, no matter who the learner is, or what they are learning. In this one respect, I now realize, I am no different than anyone else, Aspie or non-Aspie. We are all, after all, human beings.

# The Human Reaction, When Mathematics No Longer Seems to Make Sense: What Is This Sorcery?

Unless you understand all of mathematics — and absolutely no one does — there is a point, for each of us, where mathematics no longer makes sense, at least at that moment. Subjectively, this can make the mathematics beyond this point, which always awaits exploration, appear to be some form of sorcery.

Mathematics isn’t supernatural, of course, but this is a reaction humans often have to that which they do not understand. Human reactions do not require logical purpose, and they don’t always make sense — but there is always a reason for them, even if that reason is sometimes simply that one is utterly bewildered.

In my case, this is the history of my own reactions, as I remember them, to various mathematical concepts. The order used is as close as I can remember to the sequence in which I encountered each idea. The list is, of necessity, incomplete.

- Counting numbers: no problem, but what do I call the next one after [last one I knew at that time]? And the next one? And the next? Next? Next? [Repeat, until everyone within earshot flees.]
- Zero exists: well, duh. That’s how much of whatever I’m snacking on is left, after I’ve eaten it all.
- Arithmetic: oh, I’m glad to have words for this stuff I’ve been doing, but couldn’t talk about before.
- Negative numbers: um, of course those must exist. No, I don’t want to hear them explained; I’ve got this already. What, you want me to demonstrate that I understand it? Ok, can I borrow a dollar? Oh, sure, I’ll return it at some point, but not until after I’ve spent it.
- Multiple digits, the decimal point, decimal places, place value: got it; let’s move on, please. (I’ve never been patient with efforts to get me to review things, once I understand them, on the grounds that review, under such conditions, is a useless activity.)
- Pi: love at first sight.
- Fractions: that bar means you divide, so it all follows from that. Got it. Say, with these wonderful things, why, exactly, do we need decimals, again? Oh, yeah, pi — ok, we keep using decimals in order to help us better-understand the number pi. That makes sense.
- “Improper” fractions: these are cool! I need never use “mixed numbers” again (or so I thought). Also, “improper” sounds much more fun than its logical opposite, and I never liked the term “mixed numbers,” nor the way those ugly things look.
- Algebra: ok, you turned that little box we used before into an “x” — got it. Why didn’t we just use an “x” to begin with? Oh, and you can do the same stuff to both sides of equations, and that’s our primary tool to solve these cool puzzles. Ok. Got it.
- Algebra I class: why am I here when I already know all this stuff?
- Inequality symbols: I’m glad they made the little end point at the smaller number, and the larger side face the larger number, since that will be pretty much impossible to forget.
- Scientific notation: well, I’m glad I get to skip writing all those zeroes now. If only I knew about this before learning number-names, up to, and beyond, a centillion. Oh well, knowing those names won’t hurt me.
- Exponents: um, I did this already, with scientific notation. Do
*not*torture me with review of stuff I already know! - Don’t divide by zero: why not? [Tries, with a calculator]: say, is this thing broken? [Tries dividing by smaller and smaller decimals, only slightly larger than zero]: ok, the value of the fraction “blows up” as the denominator approaches zero, so it can’t actually get all the way there. Got it.
- Nonzero numbers raised to the power of zero equal one: say
*what*? [Sits, bewildered, until thinking of it in terms of writing the number one, using scientific notation: 1 x 10º.] Ok, got it now, but that was weird, not instantly understanding it. - Sine and cosine functions: got it, and I’m glad to know what those buttons on the calculator do, now, but how does the calculator know the answers? It can’t possibly have answers memorized for every millionth of a degree.
- Tangent: what is this madness that happens at ninety degrees? Oh, right, triangles can’t have two right angles. Function “blows up.” Got it.
- Infinity: this is obviously linked to what happens when dividing by ever-smaller numbers, and taking the tangent of angles approaching a right angle. I don’t have to call it “blowing up” any more. Ok, cool.
- Factoring polynomials: I have no patience for this activity, and you can’t stop me from simply throwing the quadratic formula at every second-order equation I see.
- Geometry (of the type studied in high school): speed this up, and stop stating the obvious all the time!
- Radicals: oh, I was wondering what an anti-exponent would look like.
- Imaginary numbers: well, it’s only fair that the negative numbers should also get square roots. Got it. However, Ms. _____________, I’d like to know what the square root of
*i*is, and I’d like to know this as quickly as possible. (It took this teacher and myself two or three days to find the answer to this question, but find it we did, in the days before calculators would help with problems like this.) - The phrase “mental math” . . . um, isn’t all math mental? Even if I’m using a calculator, my mind is telling my fingers which buttons to press on that gadget, so that’s still a mental activity. (I have not yielded from this position, and therefore do not use the now-despised “mental math” phrase, and, each time I have heard it, to date, my irritation with the term has increased.)
- 0.99999… (if repeated forever) is exactly equal to one: I finally understood this, but it took attacks from several different directions to get there, with headaches resulting. The key to my eventual understanding it was to use fractions: ninths, specifically.
- The number e, raised to the power of iπ, equals -1: this is sorcery, as far as I can see. [Listens to, and attempts to read, explanations of this identity.] This
*still*seems like sorcery! - What it means to take the derivative of an expression: am I just supposed to memorize this procedure? Is no one going to explain to me
*why*this works? - Taking the derivative of a polynomial: ok, I can
*do*this, but I don’t have the foggiest idea*why*I’m doing it, nor why these particular manipulations of one function give you a new function which is, at all points along the x-axis, the slope of the previous function. Memorizing a definition does not create comprehension. - Integral calculus: this gives me headaches.
- Being handed a sheet of integration formulas, and told to memorize them: hey, this isn’t even slightly fun anymore. =(
- Studying polyhedra: I finally found the “sweet spot” where I can handle some, but not all, of the puzzles, and I even get to try to find solutions in ways different from those used by others, without being chastised. Yay! Math is fun again! =)
- Realizing, while starting to write this blog-post, that you can take the volume of a sphere, in terms of the radius, (4/3)πr³, take its derivative, and you get the surface area of the same sphere, 4πr²: what is this sorcery known as calculus, and how does it work, so it can stop looking like sorcery to me?

Until and unless I experience the demystification of calculus, this blog will continue to be utterly useless as a resource in that subfield of mathematics. (You’ve been warned.) The primary reason this is so unlikely is that I haven’t finished studying (read: playing with) polyhedra yet, using non-calculus tools I already have at my disposal. If I knew I would live to be 200 years old, or older, I’d make learning calculus right now a priority, for I’m sure my current tools’ usefulness will become inadequate in a century or so, and learning calculus now, at age 47, would likely be easier than learning it later. As things are, though, it’s on the other side of the wall between that which I understand, and that which I do not: the stuff that, at least for now, looks like magic — to me.

Please don’t misunderstand, though: I don’t “believe in” magic, but use it simply as a label of convenience. It’s a name for the “box ,” in my mind, where ideas are stored, but only if I don’t understand those ideas on first exposure. They remain there until I understand them, whether by figuring the ideas out myself, or hearing them explained, and successfully understanding the explanation, at which point the ideas are no longer thought of, on any level, as “magic.”

To empty this box, the first thing I would need would be an infinite amount of time. Once I accepted the inevitability of the heat death of the universe, I was then able to accept the fact that my “box of magic” would never be completely emptied, for I will not get an infinite amount of time.

[Image credit: I made a rainbow-colored version of the compound of five cubes for the “magic box” picture at the top of this post, using *Stella 4d*, a program you may try here.]

## The Beauty of Uselessness

### Image

Given the name of this blog, and the familiarity of the number pictured above, I’m sure you recognize it as the beginning of my favorite number, pi. On various websites, you can find far more digits than are shown above. However, just the digits shown in the top row here are greater in number than that needed for any real-world, practical application. Is pi useful? Is mathematics itself useful? Of course they are . . . but those questions miss the point entirely.

Every teacher who has been in the field for long has heard the complaint, disguised as a question, “What are we ever going to use this for?” Unfortunately, most school systems, as well as teacher-training programs, have chosen to respond to this well-known complaint by repeatedly telling teachers, and teachers-in-training, that it is of extreme importance to show students how the curriculum is “relevant,” and adjust curricula to make them more so. This usually boils down, of course, to trying to convince students that learning is important because, supposedly, education = a better job in the future = more money. Sometime this “equation” works, and sometimes it does not, but it always misses a key point, one that should not be left out, but too often is.

It is a fallacy that learning has to have a practical application to be a worthwhile endeavor. There’s more to life than the fattening of bank accounts. Sadly, many of those making decisions in education do not realize this. Their attempts to reduce education to a strictly utilitarian approach are causing great harm.

This scenario has happened many times: a mathematician discovers an elegant proof to a surprising theorem, a physicist figures out something previously unknown about the nature of reality, or a researcher in another field does something comparable, and someone then asks them, “But what can this be used for?” On occasion, tired of hearing this utilitarian refrain, such researchers give unusually honest responses which surprise and confuse many people — such as, “Someone else might, at some point, find a practical application for this . . . but I sincerely hope that never happens.” Such a response is rarely understood, but it makes the person who says it feel better to vent some of their frustration with those who are obsessed with tawdry, real-world applications for everything.

Many humans — and this is a terrible shame — live almost their entire lives like rats in mazes, running down passages and around corners, chasing tangible rewards — cheese for the rats, or the ability to buy, say, a fancy new car, in the case of the people. People shouldn’t live like lab rats . . . and, unlike lab rats, we don’t have to. People are smart enough to find higher purposes in life. People can, in other words, find, understand, and appreciate beauty — in things which are useless, in the sense that they have no useful applications. We can appreciate things that transcend mere utility, if we choose to do so.

Much of life is utterly banal, for a great many people. They wake up each day, work themselves into exhaustion at horribly boring jobs, go home, numb themselves with television, massive alcohol consumption, or other hollow pursuits, fall asleep, and then get up and repeat the process the next day . . . and then they finally get old and die. Life can be so much more than that, though, and it *should* be.

The researchers I described earlier aren’t doing what they do for money, or even the potential for fame. Are such things as mathematics and physics useful? Yes, they are, but that isn’t why pure researchers do them. The same can be said for having sex: it’s useful because it produces replacement humans, but that isn’t why most people do it. People have sex, obviously, because they enjoy it. In simpler terms: it’s fun. Most people understand this concept as it relates to sex, but far fewer understand it when it relates to other aspects of life, particularly those of an academic nature.

Academic pursuits are of much greater value when the motivation involved is joy, and the fun involved, rather than avarice. As scrolling through this blog will show you, I enjoy searching for polyhedra which have not been seen before. I certainly don’t expect to get rich from any such discoveries I make in this esoteric branch of geometry, which is itself one subfield, among many, in mathematics. I do it because it is fun. It makes me happy.

Much of life is pure drudgery, but our lives can be enriched by finding joyous escapes from our routines. An excellent way to do that is to learn to appreciate the beauty of uselessness — uselessness of the type that elevates the human spirit, in a way that the pursuit of material goods never can.

This is the approach we should encourage students to have toward education. Learning is far too valuable an activity to be limited, in its purpose, to the pursuit of future wealth. It’s time to change our approach.