Order-Six Radial Tessellations of the Plane, Using Elongated and Equilateral Hexagons, Rendered with Twelve Different Coloring-Schemes

I explored radial tessellations of the plane, using only hexagons, in this earlier post. Order-three tessellations of this type are the familiar regular-hexagon tessellations of the plane. With higher-order all-hexagon radial tessellations, though, the hexagons must be elongated, although they can still remain equilateral, and all congruent, with bilateral symmetry. In that previous post, examples were shown of order 4, 5, and 8, in addition to the familiar order-3 regular-hexagon tessellation.

This left out order-6, of which I show many examples below. As it turns out, this particular radial tessellation lends itself particularly well to a variety of coloring-schemes. In the first picture, the construction-circles, -points, and -lines I used are shown; in the rest, they are hidden.

No upper limit exists to the order-number of these all-hexagon radial tessellations — although the larger that number gets, the thinner the hexagons become, relative to their edge length. At some point (which I expect would vary from person to person), as the order-number increases, the hexagons needed will become so thin that they will no longer be recognizable as hexagons.

frequency 6 radial tessellation of hexagons with construction lines

Next, with construction artifacts hidden, are some two-color designs I found.

frequency 6 radial tessellation of hexagons without construction lines 2-color

frequency 6 radial tessellation of hexagons without construction lines 2-color version two

Here are some which use three colors each:

frequency 6 radial tessellation of hexagons without construction lines 3-color version colored by another system

frequency 6 radial tessellation of hexagons without construction lines 3-color version two

frequency 6 radial tessellation of hexagons without construction lines 3-color

frequency 6 radial tessellation of hexagons without construction lines 3-color version colored by rings

I also found some four-color patterns with interesting symmetry:

frequency 6 radial tessellation of hexagons without construction lines

frequency 6 radial tessellation of hexagons without construction lines. four colors version 2png

Finally, here are some which each use six colors.

frequency 6 radial tessellation of hexagons without construction lines 6-color version two

frequency 6 radial tessellation of hexagons without construction lines 6-color version colored by another system

frequency 6 radial tessellation of hexagons without construction lines 6-color

Two Three Six Twelve

tess 6 4 3 4 variation

Tessellation Using Regular Enneagons, Rhombi, and Hexaconcave Dodecagons

tess 9 4 12

A Chiral Tessellation, Using Regular Dodecagons, Regular Hexagons, Squares, and Rhombi (from 2012)

tess chiral 2012I have several “lost works” that I’m slowly finding and posting, from old jumpdrives, computers, little-known blogs, etc., and this is one of them. I made it in 2012, but few have seen it before now.

Octagons, Hexagons, and Squares

octagons hexagons squares

Hexagons and Octagons

hexagons and octagons

A Tessellation Featuring Multicolored, Regular Tetracontagons, as Well as Tetraconcave, Black, and Equilateral Hexatriacontagons

40

A Radial Tessellation of Regular Decagons and Bowtie Hexagons

decagon and bowtie hexagons

This tiling-pattern could be continued indefinitely, while still maintaining its five-fold radial symmetry, giving it the overall appearance of a pentagon.

A Golden Tessellation

golden tiling

This tessellation can be viewed in at least two ways: it can be seen as being composed of overlapping octagons which are equilateral, but not equiangular — or it can be viewed as a periodically-repeating pattern of golden gnomons, as well as golden triangles of two different sizes. Both golden triangles and golden gnomons are isosceles triangles with sides in the golden ratio, but golden triangles are acute, while golden gnomons are obtuse.

A Tessellation of Regular Octadecagons and Three Types of Hexagon

tiling B