Unknown's avatar

About RobertLovesPi

I go by RobertLovesPi on-line, and am interested in many things, a large portion of which are geometrical. Welcome to my own little slice of the Internet. The viewpoints and opinions expressed on this website are my own. They should not be confused with those of my employer, nor any other organization, nor institution, of any kind.

Isosceles Interference Pattern (two versions)

Image

isosceles interference pattern

isosceles interference pattern

Interference Spider with Two Eyes Showing (from 2013)

Image

spider interference pattern 2013

Every now and then, I find something I created some years ago, but never blogged here. This is another such piece, which I made in 2013 (using Geometer’s Sketchpad and MS-Paint), but did not name until today.

Polyhedral Modeling, Using Steel Balls and Cylindrical Magnets

Many commercial products are available to model polyhedra, such as Zometools, Stella 4d, Polydrons, Astro-Logix, and magnetic spheres which can be assembled into polyhedral shapes, sometimes with brightly-colored struts for the edges of the polyhedron. The first three tools, I can recommend without reservation (and I simply haven’t tried Astro-Logix, yet), but there is a problem with using rare-earth “ball magnets” to model polyhedra: the magnets don’t last long, for, while their magnetic fields are powerful, the neodymium-iron-boron alloy used to make these magnets is not durable, and such spherical magnets break easily.

For this reason, I decided to try a variation of the “ball magnet” idea, and instead obtained some (non-magnetic) steel balls, along with small, cylindrical rare-earth magnets to go between them, thus serving as polyhedral edges, while the steel balls serve as polyhedral vertices. With the steel balls keeping these cylindrical magnets separated (rather than smashing into each other), the magnets are more durable, and the steel balls, of course, do not have a durability problem. Here’s what I was able to produce when I attempted to make a set of Platonic solids, using this method:

160110_0000

The icosahedron, cube, octahedron, and tetrahedron shown above were easy to make, but attempting to construct a dodecahedron from these materials was an exercise in frustration. Forming one pentagon of this type is easy, but pentagons of this type lack the rigidity of triangles, or even the lesser rigidity of squares, and I was never able to get twelve such pentagons formed into a dodecahedron without the whole thing collapsing into a big ferromagnetic glob, which isn’t what I wanted at all.

Every polyhedron-modeling system has advantages and disadvantages, and the weakness of this particular system was made apparent by my failed attempt to construct a dodecahedron. I next tried adding triangles to pentagons, hoping the rigidity of the triangles would stabilize the pentagons, and allow me to construct an icosidodecahedron, the Archimedean solid which combines the twenty triangles of an icosahedron with the twelve pentagons of a dodecahedron. This method of combining triangles with pentagons did work, and I was able to construct an icosidodecahedron.

160110_0001

A major advantage of this medium for polyhedral modeling is that it is incredibly economical, compared to most specialized-purpose polyhedron-building tools. The materials are readily available on eBay. Non-magnetized steel balls are much less expensive than their magnetic counterparts; also, small cylindrical magnets are inexpensive as well, especially in large quantities. These will not be the last polyhedra I build using these materials — but they are suited for certain polyhedra, more so than others. With this system, the more equilateral triangles a given polyhedron has as faces, the better, for the rigidity of triangles adds to the overall stability of triangle-containing polyhedral models.

A Spectrum of Pentagons, Backed By Black & White

Image

pentagons

Two Color-Patterns of a Tessellation Using Squares, Rhombi, Equilateral Hexagons, Tetraconcave Octagons, and Regular Octagons

new tessnew tess 2

Octagons Can Tile a Plane III

Unlike my previous octagon-tiling discoveries (see previous post), this is a chiral, radial tessellation, with the colors chosen to highlight that fact.

tessoct radial

Octagons Can Tile a Plane II

In April 2014, I found a tessellation of the plane which uses two kinds of octagons — both types equilateral, but only one type regular.

Now, I have found two more ways to tessellate a plane with octagons, and these octagons are also equilateral. However, in these new tessellations, only one type of octagon is used. One of them appears below, twice (the second time is with reversed colors), and the other one appears, once, in the next post.

tessoct

tessoct 2

A Truncated Icosahedron, Formed By Silver Pipes, and Gold Fastenings

Trunc Icosa gold and silver

I made this precious-metal version of the truncated icosahedron using Stella 4d, a program which is available here: http://www.software3d.com/Stella.php.

A Compound of Two Pyritohedral Dodecahedra

compound of two pyritohedral dodecahedra

I made this compound using Stella 4d, a program which is available here: http://www.software3d.com/Stella.php.

The Compounds of Five Octahedra and Five Cubes, and Related Polyhedra

This is the compound of five octahedra, each a different color.

Cubes 5

Since the cube is dual to the octahedron, the compound of five cubes, below, is dual to the compound above.

cubes-5a

Here are five cubes and five octahedra, compounded together, and shown with the same five colors used above.

Cubes 5 and octahedra 5

This is the same compound, except with all squares/cubes having one color, and triangles/octahedra having another, made by changing the color-scheme used by Stella 4d (the program I use to make these images; it’s available here).

Cubes 5 and octahedra 5 colored by face-type

After seeing the two-color version of this ten-part compound, I decided to start stellating it, looking for stellations with an interesting appearance. Here is the 23rd stellation of the ten-part compound, colored by face-type.

Compound of 5 Cubes and dual 23rd stellation

Next, the 27th stellation, which is chiral, unlike the stellation showed above.

Compound of 5 Cubes and dual 27th stellation

The 33rd stellation also has an interesting appearance (using, I admit, completely subjective criteria for “interesting”), while still having easily-noticable differences to the stellations shown above.

Compound of 5 Cubes and dual 33rd stellation

At the 35th stellation, another interesting chiral polyhedron is found. Unexpectedly, its direction of “twist” appears opposite that seen in the 27th stellation. (It could well be that this “twist-reversal” is a common phenomenon in stellation-series — simply one I have never noticed before.)

Compound of 5 Cubes and dual 35th stellation

Next, the ten-part compound’s 39th stellation.

Compound of 5 Cubes and dual 39th stellation

After the 39th stellation, I entered a sort of “desert,” with many stellations in a row which did not strike me as interesting, often with only tiny differences between one and the next. The 194th stellation, though, I liked.

Compound of 5 Cubes and dual 194th stellation

Although I liked the 194th stellation, I didn’t want to risk trudging through another “desert” like the one which preceded it, so I jumped ahead to the final valid stellation, after which the series “wraps around” to its beginning.

Compound of 5 Cubes and dual final valid stellation

Next, I made another rotating image of this final valid stellation, this time with the color-scheme set to “rainbow color mode.”

Compound of 5 Cubes and dual final valid stellation rbc

I couldn’t resist taking this one stellation further, to see the beginning of the stellation-series, since I knew I might have entered it somewhere in the middle, rather than at the beginning.

Compound of 5 Cubes and dual final valid stellation next one rbc

What I found, I immediately recognized as the rhombic triacontahedron. In some ways, this was surprising, and in other ways, it was not. The compound of five cubes is, itself, a stellation of the rhombic triacontahedron — but what I started stellating also included the compound of five octahedra, which, so far as I know, is not part of the rhombic triacontahedron’s (very) long stellation-series. Also, I know what the rhombic triacontahedron’s final stellation looks like, and it isn’t the final stellation shown above, but is, instead, this:

final-stellation-of-the-rhombic-triaconta

To try to better-understand just what was going on here, I went back, and deliberately left out the five-cube part of the ten-part compound (which is a stellation of the rhombic triacontahedron), which left me just with the compound of five octahedra — and then I had Stella produce this compound’s final stellation.

Octahedra 5 final stellation

This was another polyhedron I recognized: the final stellation of the icosahedron. To verify that my memory was correct, I stellated it one more time. Sure enough, this is what I got:

Octahedra 5 final stellation one more

This reminded me that the compound of five octahedra is the second stellation of the icosahedron, helping to explain some of this. I also noticed that the five-octahedron compound can be seen as a faceting of the icosidodecahedron. (The icosidodecahedron is dual to the rhombic triacontahedron, and faceting is the reciprocal function of stellation.) However, I have no idea why the final stellation of the ten-part compound above appears as it does.

It is my opinion that a productive polyhedral investigation usually does more than answer questions; it also raises new ones. At least in my mind, that’s exactly what has happened. Therefore, I think this was a perfectly good way to begin the new year.