George Carlin, on Change

change machine

On numerous occasions, I have repeated this experiment, in keeping with the scientific method. I have obtained the same null result as Carlin obtained, each and every time.

Have you noticed what silver’s been doing lately? The price of silver is literally on fire!

silver is literally on fire

Because of the price of silver being literally on fire, they will not be buying and selling troy ounces of metallic silver when the markets open in New York tomorrow morning. Instead, they will be selling “oxide ounces” of silver oxide, in sealed-plastic capsules of this black powder, with an oxide ounce of silver oxide being defined as that amount of silver oxide which contains one troy ounce of silver.

silver oxide capsule

A troy ounce of silver is 31.1 grams of that element, which has a molar mass of 107.868 g/mole. Therefore, a troy ounce of silver contains (31.1 g)(1 mol/107.868 g) = 0.288 moles of silver. An oxide ounce of silver oxide would also contain oxygen, of course, and the formula on the front side of a silver oxide capsule (shown above; information on the back of the capsule gives the number of oxide ounces, which can vary from one capsule to another) is all that is needed to know that the number of moles of oxygen atoms (not molecules) is half the number of moles of silver, or (0.288 mol)/2 = 0.144 moles of oxygen atoms. Oxygen’s non-molecular molar mass is 15.9994 g, so this is (0.144 mol)(15.9994 g/mol) = 2.30 g of oxygen. Add that to the 31.1 g of silver in an oxide ounce of silver oxide, and you have 31.1 g + 2.30 g = 33.4 grams of silver oxide in an oxide ounce of that compound.

In practice, however, silver oxide (a black powder) is much less human-friendly than metallic silver bars, coins, or rounds. As you can easily verify for yourself using Google, silver oxide powder can, and has, caused health problems in humans, especially when inhaled. This is the reason for encapsulation in plastic, and the plastic, for health reasons, must be far more substantial than a mere plastic bag. For encapsulated silver oxide, the new industry standard will be to use exactly 6.6 g of hard plastic per oxide ounce of silver oxide, and this standard will be maintained when they begin manufacturing bars, rounds, and coins of silver oxide powder enclosed in hard plastic. This has created a new unit of measure — the “encapsulated ounce” — which is the total mass of one oxide ounce of silver oxide, plus the hard plastic surrounding it on all sides, for a total of 33.4 g + 6.6 g = 40.0 grams, which will certainly be a convenient number to use, compared to its predecessor-units.  

# # #

[This is not from The Onion. We promise. It is, rather, a production of the Committee to Give Up on Getting People to Ever Understand the Meaning of the Word “Literally,” or CGUGPEUMWL, which is fun to try to pronounce.]

 

 

When We Build Our Dyson Sphere, Let’s Not Use Enneagonal Antiprisms

Before an undertaking as great as building a Dyson Sphere, it’s a good idea to plan ahead first. This rotating image shows what my plan for an enneagonal-antiprism-based Dyson Sphere looked like, at the hemisphere stage. At this point, the best I could hope for is was three-fold dihedral symmetry.

Augmented 9- Antiprism

I didn’t get what I was hoping for, but only ended up with plain old three-fold polar symmetry, once my Dyson Sphere plan got at far as it could go without the unit enneagonal antiprisms running into each other. Polyhedra-obsessives tend to also be symmetry-obsessives, and this just isn’t good enough for me.

Augmented 9- Antiprism complete

If we filled in the gaps by creating the convex hull of the above complex of enneagonal antiprisms, in order to capture all the sun’s energy (and make our Dyson Sphere harder to see from outside it), here’s what this would look like, in false color (the real thing would be black) — and the convex hull of this Dyson Sphere design, in my opinion, especially when colored by number of sides per face, really reveals how bad an idea it would be to build our Dyson sphere in this way.

Dyson Sphere Convex hull

We could find ourselves laughed out of the Galactic Alliance if we built such a low-order-of-symmetry Dyson Sphere — so, please, don’t do it. On the other hand, please also stay away from geodesic spheres or their duals, the polyhedra which resemble fullerenes, for we certainly don’t want our Dyson Sphere looking like all the rest of them. We need to find something better, before construction begins. Perhaps a snub dodecahedron? But, if we use a chiral polyhedron, how do we decide which enantiomer to use?

[All three images of my not-good-enough Dyson Sphere plan were created using Stella 4d, which you can get for yourself at this website.]

My Centripetal Force Joke: A True Story

orbit

In the Summer of 2014, with many other science teachers, I took a four-day-long A.P. Physics training session, which was definitely a valuable experience, for me, as a teacher. On the last day of this training, though, in the late afternoon, as the trainer and trainees were winding things up, some of us, including me, started getting a little silly. Physics teachers, of course, have their own version of silly behavior. Here’s what happened.

The trainer: “Let’s see how well you understand the different forces which can serve as centripetal forces, in different situations. When I twirl a ball, on a string, in a horizontal circle, what is the centripetal force?”

The class of trainees, in unison: “Tension!”

Trainer: “In the Bohr model of a hydrogen atom, the force keeping the electron traveling in a circle around the proton is the . . . ?”

Class: “Electromagnetic force!”

Trainer: “What force serves as the centripetal force keeping the Earth in orbit around the Sun?”

Me, loudly, before any of my classmates could answer: “God’s will!”

I was, remember, surrounded by physics teachers. It took the trainer several minutes to restore order, after that.

The Physics of Cats, Copperheads, Centipedes, Catbounce, and Catbouncemax

catbouncemax

Definition of catbouncemax (shortened form of “maximum catbounce”): for any particular cat, its catbouncemax is equal to the takeoff kinetic energy of that cat if it suddenly and unexpectedly finds itself face-to-face with an adult copperhead snake.

I’ve actually seen this happen. Really. The cat reached a height I estimate as 1.4 meters.

Measured in joules, a cat’s catbouncemax can most easily be approximated by observing and estimating the maximum height of the cat under these conditions. For ethical and safety reasons, of course, one must simply be observant, and wait for this to happen. Deliberately introducing cats and copperheads (or other dangerous animals) to each other is specifically NOT recommended. Staying away from copperheads, on the other hand, IS recommended. Good science requires patience!

After the waiting is over (be prepared to wait for years), and the cat’s maximum height h, in meters, has been estimated, the cat’s catbouncemax can then be determined by energy conservation, since its takeoff kinetic energy (formerly stored as feline potential energy, until the moment the cat spots the copperhead) is equal to the gravitational potential energy (PE = mgh) of the cat at the top of the parabolic arc. In the catbounce I witnessed, the cat who encountered a copperhead (while walking through tall grass, which is why the cat didn’t see the snake coming) was a big cat, at an estimated mass of 6.0 kg. His catbouncemax was therefore, by energy conservation, equal to mgh = (6.0 kg)(1.4 m)(9.81 m/s²) = ~82 joules, which means this particular cat had 82 J of ophidiofeline potential energy stored, specifically for use in the event of an encounter with a large, adult copperhead, or other animal (there aren’t many) with the ability to scare this cat equally as much as such a copperhead. (I’m using a copperhead in this account for one reason: that’s the type of animal which initiated the highest catbounce I have ever witnessed, and I seriously doubt that this particular cat could jump any higher than 1.4 m, under any  circumstances.)

It should be noted that the horizontal distance covered by a catbounce is not needed to calculate a cat’s catbouncemax. However, this horizontal distance will not be zero, as is apparent in the diagram above. Why? Simple: cats don’t jump straight up in reaction to copperheads, for they are smart enough not to want to fall right back down on top of such a snake.

It is more common, of course, for cats to jump away from scary things which are less scary than adult copperheads. For example, there certainly exist centipedes which are large enough to scare a cat, causing it to catbounce, but with that centipede-induced catbounce being less than its catbouncemax. The following fictional dialogue demonstrates how such lesser catbounces can be most easily described. (Side note: this dialogue is set in Arkansas, where we have cats and copperheads, and where I witnessed the copperhead-induced maximum catbounce described above.)

She: Did you see that cat jump?!?

He: Yep! Must be something scary, over there in that there flowerpatch, for Cinnamon to jump that high. At least I know it’s not a copperhead, though.

She: A copperhead? How do you know that?

He: Oh, that was quite a jump, dear, but a real copperhead would give that cat of yours an even higher catbounce than that! The catbounce we just saw was no more than 75% of Cinnamon’s catbouncemax, and that’s being generous.

She: Well, what IS in the flowerpatch? Something sure scared poor Cinnamon! Go check, please, would you?

He: [Walks over from the front porch, where the couple has been standing this whole time, toward the flowerpatch. Once he gets half-way there, he stops abruptly, and shouts.] Holy %$#@! That’s the biggest centipede I’ve ever seen!

She: KILL IT! KILL IT NOW!

Free the Frozen People!

150127_0000

After seeing this sign in a local grocery store, I carefully searched the entire frozen food section, but I could find neither the frozen Mexican, nor the frozen Asian. Since they were gone, but the sign indicates they were there at one point, I concluded that the experiment was over, and hoped they had thawed out both experimental test subjects, found them still healthy after a few days in cryogenic suspended animation, and sent them home, each with a fat check to compensate them for the huge risk they just took.

However, even with compensation and signed consent forms, I still have certain ethical reservations about scientists performing this sort of experiment on actual human beings. Why not freeze, thaw, refreeze, and rethaw mice, instead? Is PETA really that scary?

Are they still doing these experiments, in my town or elsewhere? If so . . . free the frozen people!

There is one last thing about this whole thing which I just can’t figure out, though, and that’s this: why were they storing their frozen, experimental, human test subjects in the middle of a central Arkansas grocery store in the first place?

Amazing Discovery! Gasoline Smells Like . . . .

duh

In this source, http://www.atsdr.cdc.gov/toxprofiles/tp72-c3.pdf, on p. 109, the CDC oh-so-helpfully describes the odor of gasoline as a “gasoline odor.” Yes, really. They even cite a source for this fact, as if it were ever questioned by anyone. I’m glad to see my tax dollars going to such ground-breaking research — aren’t you? Here’s a screenshot (I added the red ellipses):

gasoline smells like gasoline

Now I have a headache.

The Misadventures of Jynx the Kitten, Chapter Four: Jynx “Helps” with Grading Papers, and Discovers a New Talent

Pic-03292015-001

This is the last day of Spring Break, and grades for the third quarter are due tomorrow, so it should surprise no one that I’m grading papers. Things were going well, too, until Jynx the Kitten decided to “help.”

I told Jynx that I did not need his “help,” since I already know how to grade papers; I even told him that I very much needed not to have his “help.” Jynx did not care. Papers were there, and he was determined to grade them.

The only problem (for Jynx) was that, before Spring Break even began, I had sorted all the papers to be graded, folded each set separately, and fastened each bundle shut with a separate rubber band, simply to organize the papers to be graded. Some of us in education call this sorting-process “pre-grading,” or something like that. Jynx didn’t like it, though, for the rubber bands kept him from getting to the papers he so desperately wanted to grade (or eat, or shred, or something).

He could, of course, get to the rubber bands, for they were on the outside of each of the bundles of papers. He has claws to pluck them, and did so. He also started trying to pull off the rubber bands with his teeth. Each time a rubber band got plucked, by tooth or claw, twang! Different rubber bands on different bundles were stretched with varying tensions, producing rubber-band-twanging sounds of varying frequency. In other words: Jynx played different musical notes.

Soon, Jynx had forgotten all about grading papers, and was simply having fun playing music for the first time. He was delighted to be playing music . . . or frustrated that he couldn’t get the bundles open . . . or possibly both.

I had also forgotten all about grading papers, and simply sat, listening in amazement, for I’ve had cats all my life, and, aside from the familiar “cat on a piano” song many people have heard, I have never before heard a cat, nor a kitten, attempt to play music.

Jynx’s improvisational rubber-band piece started to improve rapidly with practice, and soon Jynx’s music was much better than even the best-rendered version of “cat on a piano” I have ever heard before — and he’s still a kitten!

Unfortunately, I was not able to open software to record Jynx’s music in time, before he moved on to other things, as kittens do fairly often. As a result, only my wife and I know what Jynx’s music actually sounds like. I did manage to snap the picture above, of him looking up at me from his “musical instruments,” before he moved on to the next of his hijinks for the day, of which there are always many.

And, now that Jynx has decided it’s nap time, I’ll get back to grading these papers.

My Impressions, Upon Wearing a CPAP Machine, at Home, for the First Time

I was recently diagnosed with sleep apnea. As a result, I now have a CPAP machine, on me and running, for the first time at home. The headgear reminds me of the uniform Alex Summers wears, as Havok of the X-Men, except that his nose isn’t covered, as mine is. I also have shown no ability to focus the energy from cosmic rays at targets of my choice, or anything remotely like that . . . at least not yet.

Alexander_Summers_(Earth-616)_0001

Others seem to think I look a tad more ridiculous, however.

As far as how I sound, I literally have to keep my big mouth shut for this thing to work, so my wife (without whose help I couldn’t have gotten into this contraption) always gets the last word now. (Also last snicker, etc., as she just pointed out to me, happy that she can talk, without risk of interruption, for a change.) As she was putting it on, though, I talked as much as I could, until she reminded me that I’m not supposed to talk while, um, “CPAPping.” However, my last bit of chatter for the night sounded like Darth Vader doing an impersonation of Stephen Hawking.

Darth_Vader